56 research outputs found

    Advanced measurement techniques for the characterization of ReRAM devices

    Get PDF
    In some Resistive Random Access Memories (ReRAM), which could become the next generation of non-volatile memories [1], the voltage-controlled high and low resistance states (HRS and LRS, respectively) are associated to the creation (Set) and disruption (Reset) of a conductive filament (CF) that locally connects (LRS) or disconnects (HRS) the electrodes [2]. Usually, a current limit (CL) must be fixed during the Set process. Typically, these devices are characterized using source measurement units (SMU) to measure the current through the device. However, most of the SMU have a low sampling rate (around 1sample/1ms) and the current limitation mechanism used by the equipment is not well understood. To overcome these limitations, in this work, a low-cost setup with large sampling rate (larger than 1sample/10ÎĽs) is presented which, in addition, includes a well-controlled wide-range current limiting unit, CLCU (Fig. 1). The system is suitable to capture fast transients during the Set/Reset processes (Fig. 2) and to detect HRS Random Telegraph Noise (RTN) unresolvable by SMUs (Fig. 3) [3]. These device-level measurements can be combined with a Conductive Atomic Force Microscope, to get information on CF properties that cannot be directly measured at device level, as, for example, the spatial distribution of current in the CF at LRS and HRS (Fig. 4) [4]. Please click Additional Files below to see the full abstract

    Spherical structures on torus knots and links

    Full text link
    The present paper considers two infinite families of cone-manifolds endowed with spherical metric. The singular strata is either the torus knot t(2n+1,2){\rm t}(2n+1, 2) or the torus link t(2n,2){\rm t}(2n, 2). Domains of existence for a spherical metric are found in terms of cone angles and volume formul{\ae} are presented.Comment: 17 pages, 5 figures; typo

    Gate current analysis of AlGaN/GaN on silicon heterojunction transistors at the nanoscale

    Get PDF
    The gate leakage current of AlGaN/GaN (on silicon)high electron mobility transistor(HEMT) is investigated at the micro and nanoscale. The gate current dependence (25-310 °C) on the temperature is used to identify the potential conduction mechanisms, as trap assisted tunneling or field emission. The conductive atomic force microscopy investigation of the HEMT surface has revealed some correlation between the topography and the leakage current, which is analyzed in detail. The effect of introducing a thin dielectric in the gate is also discussed in the micro and the nanoscale

    A glimpse into Thurston's work

    Full text link
    We present an overview of some significant results of Thurston and their impact on mathematics. The final version of this paper will appear as Chapter 1 of the book "In the tradition of Thurston: Geometry and topology", edited by K. Ohshika and A. Papadopoulos (Springer, 2020)

    Geometry of the SL(3,â„‚)-character variety of torus knots.

    Get PDF
    Let G be the fundamental group of the complement of the torus knot of type (m, n). It has a presentation G = . We find a geometric description of the character variety X(G) of characters of representations of G into SL(3,â„‚), GL(3,â„‚) and PGL(3,â„‚)

    Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem

    No full text
    We give a complete proof of Thurston's celebrated hyperbolic Dehn filling theorem, following the ideal triangulation approach of Thurston and Neumann-Zagier. We avoid to assume that a genuine ideal triangulation always exists, using only a partially flat one, obtained by subdividing an Epstein-Penner decomposition. This forces us to deal with negatively oriented tetrahedra. Our analysis of the set of hyperbolic Dehn filling coefficients is elementary and self-contained. In particular, it does not assume smoothness of the complete point in the variety of deformations.Comment: 23 pages, 4 figures, Late
    • …
    corecore