35 research outputs found

    Mean-Motion Resonances of High Order in Extrasolar Planetary Systems

    Full text link
    Many multi-planet systems have been discovered in recent years. Some of them are in mean-motion resonances (MMR). Planet formation theory was successful in explaining the formation of 2:1, 3:1 and other low resonances as a result of convergent migration. However, higher order resonances require high initial orbital eccentricities in order to be formed by this process and these are in general unexpected in a dissipative disk. We present a way of generating large initial eccentricities using additional planets. This procedure allows us to form high order MMRs and predict new planets using a genetic N-body code.Comment: To appear in Proceedings: Extrasolar Planets in Multi-body Systems: Theory and Observations; Editors K. Gozdziewski, A. Niedzielski and J. Schneider; 5 pages, 2 figures

    Nonlinear distortion of intense THz beams

    Get PDF
    Near- and far-field beam profiles were measured for THz pulses generated in LiNbO3 by optical rectification of 200 fs pulses with a tilted pulse front. The variation of the THz beam size and a dramatically increasing divergence angle with increasing pump fluence were observed in the (horizontal) plane of the pulse front tilt. No significant variation was observed in the vertical direction. The reason for the observed nonlinear beam distortion is the shortening of the effective interaction length for THz generation caused by the combined effect of pump spectral broadening and angular dispersion in the tilted pulse front geometry. Our results indicate that nonlinear THz beam distortion effects have to be taken into account when designing intense THz sources and related experiments

    European studies: Taking stock and looking ahead

    Get PDF
    This essay is an attempt to generalize experiences of Central and Eastern European universities in the field of European Studies over the past 20 years. The paper follows the logic of business analysis in order to come up with proposals for future action

    Tunneling and the Spectrum of the Potts Model

    Get PDF
    The three-dimensional, three-state Potts model is studied as a paradigm for high temperature quantum chromodynamics. In a high statistics numerical simulation using a Swendson-Wang algorithm, we study cubic lattices of dimension as large as 64364^3 and measure correlation functions on long lattices of dimension 202×12020^2\times 120 and 302×12030^2\times 120. These correlations are controlled by the spectrum of the transfer matrix. This spectrum is studied in the vicinity of the phase transition. The analysis classifies the spectral levels according to an underlying S3S_3 symmetry. Near the phase transition the spectrum agrees nicely with a simple four-component hamiltonian model. In the context of this model, we find that low temperature ordered-ordered interfaces nearly always involve a disordered phase intermediate. We present a new spectral method for determining the surface tension between phases.Comment: 26 pages plus 13 Postscript figures (Axis versions also provided), UU-HEP-92/

    O'KKLT

    Get PDF
    We propose to combine the quantum corrected O'Raifeartaigh model, which has a dS minimum near the origin of the moduli space, with the KKLT model with an AdS minimum. The combined effective N=1 supergravity model, which we call O'KKLT, has a dS minimum with all moduli stabilized. Gravitino in the O'KKLT model tends to be light in the regime of validity of our approximations. We show how one can construct models with a light gravitino and a high barrier protecting vacuum stability during the cosmological evolution.Comment: 12 pages, 4 figures, a reference added, the version to appear in JHE
    corecore