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The three-dimensional, three-state P otts model is studied as a paradigm for high-tem perature 
quantum  chromodynamics. In a  high-statistics numerical simulation using a Swendson-Wang algo­
rithm , we study cubic lattices of dimension as large as 643 and measure correlation functions on long 
lattices of dimension 202 x 120 and 302 x 120. These correlations are controlled by the spectrum  of 
the transfer m atrix. This spectrum  is studied in the vicinity of the phase transition. The analysis 
classifies the spectral levels according to an underlying S 3 symmetry. Near the phase transition the 
spectrum  agrees nicely w ith a simple four-component Hamiltonian model. In the context of this 
model, we find th a t low-tem perature ordered-ordered interfaces nearly always involve a  disordered 
phase intermediate. We use a spectral m ethod for determining the surface tension between phases.
PACS number(s): 05.50-fq, 12.38.Mn, 64.60.Cn

I. IN TR O D U C TIO N

The three-dimensional, three-state Potts model has 
long been studied as a paradigm for the phase structure of 
quantum chromodynamics (QCD) at high temperature in 
the heavy quark limit [1]. It has been found that at zero 
magnetic field, the Potts model has a weak first-order 
phase transition, separating a low-temperature phase 
that breaks the Z ( 3) symmetry and a high-temperature 
phase in which the symmetry is restored [2]. The un­
derlying Z ( 3) symmetry requires that at low tempera­
ture there be three-ordered or broken symmetry phases 
with the same free energy. In a finite volume system the 
behavior of the theory in the vicinity of the phase tran­
sition is complicated by tunneling among four phases: 
the three-ordered phases and the disordered (symmetry- 
restored) phase.

The Potts model with no magnetic field corresponds 
to QCD with infinitely heavy quarks— in effect, with­
out any dynamical quarks. In a study of QCD without 
quarks the APE group found that the correlation length 
of the system appears to grow as the physical volume 
is increased, suggesting an infinite correlation length in 
the infinite volume limit, a characteristic of a continu­
ous phase transition [4]. Doubts were raised that the 
phase transition is first order. The APE study differed 
from other contemporary work [5] in measuring correla­
tion lengths on lattices with one long dimension. Two 
more recent high-statistics studies of the Potts model 
and of QCD, using different indicators of the order of the 
phase transition, reconfirmed the first-order character of 
the phase transition in both models [6, 7]. These more 
recent studies used a finite-size scaling analysis of sus­
ceptibilities to demonstrate a first-order transition. The 
now widely accepted explanation for the confusion over 
correlation lengths is that finite volume tunneling among 
the Z(3)-equivalent ordered phases introduces a correla­
tion related to the typical domain size of those phases
[3]. This correlation length does indeed become infinite

in an infinite volume system, as a natural consequence of 
the first-order character of the phase transition.

To give an explicit demonstration of the effects of tun­
neling on correlations and to develop new insight into 
the thermodynamics of domain boundaries, we have car­
ried out a new study of the three-state, three-dimensional 
Potts model on lattices with one long dimension [8]. Our 
study emphasizes the determination of the spectrum of 
the transfer matrix. We demonstrate explicitly how tun­
neling modifies the spectrum and, as a consequence, the 
correlation lengths in the vicinity of the phase transition. 
Our study parallels work done with the four-dimensional 
Ising model by Jansen et al. [9]. Our work makes it 
possible to understand the results of the several refer­
ences [4-7] in a common framework. In the next sec­
tion we introduce our notation, discuss the Ss symme­
try of the transfer matrix, develop a phenomenological 
four-component model for tunneling, and introduce the 
formulas needed for obtaining the spectrum. In Sec. I ll 
we present the results of the simulation. We show that 
the spectrum and interface statistics agree well with pre­
dictions of the four-component model. We obtain the 
surface tension from the spectral splittings. In the final 
section we state our conclusions.

II. PH ENO M ENO LO G Y OF TH E PO TTS MODEL

A. Transfer m atrix and sym m etries

The three-dimensional, three-state Potts model is a 
classical spin system with one spin Si on each site i =  
(x, t/, z)  of a cubic lattice. Let the lattice dimension be 
Lx x Ly x L. Spins take on the values s* € Z(3)  =  
{ 1, exp(±27rz/3)}. The partition function of the Potts 
model at zero magnetic field is given by

Z(J3) =  exp (  - f3  Re s'si+a  ) , (1)
S i \  ( if j,)  J
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where i 4- A is the nearest-neighbor site in the positive ji 
direction and the sum s* is over all configurations of spins. 
Let the spins on a plane of constant lattice coordinate z 
be denoted Sz =  { sX)y}Z\x e 1 ,... .,L x,y €  1,
Then, as is well known, the partition function can be 
written as the trace of the transfer matrix raised to the 
power L:

Z{(3) =  T t T L, (2)

where explicitly

{&z\T\Sz+i) =  exp ^ - ft Re s (x,y,z)s (x,y,z+l)

^ e s (x,y,z)s (x,yfz)+jj, I •

(3)

The expectation value of an operator O  on this ensemble 
is expressed in terms of the transfer matrix as 
______________________________________̂____I

(O) = T r ( T L0 ) / T r T L. (4)

The correlation between local operators A(z)  and B(z')  
with z f >  z  is expressed as

(A{z)B(z'))  =  Tr{TzA T z' - zB T L~z' ) / T r T L. (5)

A Hamiltonian matrix H  is defined as usual in terms of 
the transfer matrix so that

T  — exp(—H ), (6)

and the spectral decomposition of the transfer matrix in 
terms of the eigenvalues En of the Hamiltonian H  is

T  =  £ |n )eK p(-JE ?n)< n |. (7)
n

Let n — 0 denote the ground state. The correlation be­
tween two local operators A  and B  is then written in 
terms of the spectrum as

, a, \ t">/ /xv Y^m n (m\ A\ n)  {n \B\m)eyLv[- (En -  E m)(z' -  z ) ) e x v ( - E mL) 
{A{Z)B{Z»  ------------------------------------ ---------------------------------------------

In this way correlations between local operators give in­
formation about the spectrum of the transfer matrix. (Of 
course, only the energy level differences (E n  — E q )  have 
physical significance.)

The Potts model is symmetric under global transfor­
mations of the threefold permutation group S3. These 
transformations are generated by

Si —► e± 27rt/3s*, Si —> s* V*. (9)

Therefore each of the eigenstates of H  and each of the 
operators of interest O can be classified according to the 
three irreducible representations S  (symmetric), A  (an­
tisymmetric), and M  (mixed, two dimensional). For ex­
ample, the spin operator, itself, belongs to M , the op­
erator |s |2 belongs to S, and the operator R e s i l m s j  — 
Im si Re Sj belongs to A.

B. Simple m odel

To begin with the classification of states, consider first 
the extreme case (3 oo. As is well known, the sta­
tistical ensemble reduces to three configurations of equal 
weight, with all spins aligned in either of the three Z {3) 
directions. In the Hamiltonian language the ground state 
of H  at infinite (3 is threefold degenerate, with all spins 
on the (x, y) plane aligned in one of the three directions. 
Call these three states |1), |2), and |3). These states are 
related by a Z{ 3) transformation R  as follows:

|2> =  JR|1>, |3) =  R \ 2 ) . (10)

At the other extreme, (3 =  0 , the statistical ensemble 
contains all spin configurations with equal weight, and 
the ground state of the Hamiltonian is not degenerate.

I
Call it |0). These states have finite-/? counterparts.

Beginning from these extremes, we introduce a phe­
nomenological model for the spectrum at intermediate /3 
in a finite volume system. As f3 is decreased from infinity, 
mixing between the three degenerate states occurs. Be­
cause of the Ss symmetry, the Hamiltonian matrix must 
be approximately of the form

( :  i s ) - • <u)

As a result of mixing, the degeneracy of the three states 
is lifted, giving rise to a symmetric ground state |0s) =  
|1) -f 12) +  13) and a twofold degenerate mixed-symmetry 
state | Ora) of slightly higher energy. The mixing parame­
ter e depends on the transverse area L xL y . Since mixing 
between the degenerate vacuums requires a rearrange­
ment of the spins over the entire (x, y) plane, it is plau­
sible that the dependence is

e =  exp ( -  f3LxLya((3)), (12)

where a(/3) is the surface tension for the interface. Indeed 
at large /? it is easily shown that a{(3) =  3/2.

In the infinite volume system a phase transition takes 
place at (3 =  (3C- In a finite volume, crossover occurs at 
/3C, where many observables change rapidly. For (3 <  (3c 
the ground state |0s) is then identified with the restored- 
symmetry-phase (disordered) vacuum |0), and the mixed 
symmetry state |0m) is identified as the lowest-lying 
mixed-symmetry excitation of the symmetric vacuum.

If the phase transition is first order, all four states coex­
ist. Thus to model the rounding of the phase transition, 
we write the Hamiltonian on the simplified basis of the
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four unmixed vacuum states, |0), |1), |2), and |3) as [15]

(13)

The row and column labels are in order 0, 1, 2,3. The 
parameter A =  a(/3 — /3C) with a  >  0 is the energy dif­
ference between the disordered (symmetric) phase state 
|0) and the degenerate ordered phase (broken symmetry) 
states |1), |2), |3). This difference vanishes at crossover. 
The parameter A gives the mixing strength between the 
disordered phase vacuum |0) and the degenerate ordered 
phase vacuums, and the parameter e gives the direct mix­
ing strength between the ordered vacuums. The eigenen- 
ergies are

E 0s =  e + % & -  i \ / A 2 - 4 e A  +  4e2 +  12A2,
-E'Om == — (14)  
E x,  =  e +  \  A +  \  \ / A 2 -  4eA +  4e2 +  12A2.

As expected, there are two states belonging to the sym­
metric representation of S \̂ one, the ground state |0s) 
and the other, an excited state |ls); and there is one 
twofold degenerate mixed symmetry state |0m) as before. 
For large (3 we expect the state |ls )  to become degener­
ate with a new excited mixed symmetry state |1 m)  (not 
included in the four-component model), in the same pat­
tern as the |Os) and |0m) states. With our criteria for as­
signing transverse planes to the four phases (see Sec. I ll B 
below), the numerical simulation indicates that e «  A. 
Thus in the region e < <  |A |, we may approximate the 
energy levels with

E q s ~  § A  
= 0,

| \ / A 2 + 12A2,
E q m  .

E u  =  iA  +  W A 2 +  12A2.

(15)
(16) 

(17)

Figure 1 summarizes the expected behavior of the ex­
citation energies, as a function of a (/3 -  f}c) / A, relative 
to the ground-state energy, which has been renormalized 
to zero in this figure. The lowest two energy differences 
in this figure come from Eqs. (15)-(17) and the energy 
difference E i m is simply a sketch. We see that in a fi­
nite system the crossover results in a smooth connection 
between the energy levels on either side of /3C. In the 
infinite volume limit the crossover is much more rapid 
and the upper wings of the curves in Fig. 1 level off as a 
consequence of higher-level crossings.

By introducing a four-level system we have assumed a 
first-order phase transition. In a continuous phase tran­
sition the states |0) and |0s) should be equivalent, and 
a three-level system would suffice. Although the model 
focuses on the lowest few levels, it can, of course, be en­
larged to incorporate other excited levels as well. Indeed, 
in order to incorporate the excited levels quantitatively, 
at least eight levels are needed: four for the states already 
considered, and four more for the corresponding excited 
states.

Let us be more explicit about the excitations of the

-10 0
A/A

10

FIG. 1. Phenomenological model of the lowest three en­
ergy levels a t crossover. The ground-state energy has been 
adjusted to  zero a t all (3. The level Eim  does not come from 
the model; it is based merely on a guess. The others come 
from the four-component model equations (15)-(17). Tran­
sitions induced by a mixed operator are indicated w ith “M ” 
and a symmetric operator with “S'.”

ordered phase. In the infinite volume limit these vacuums 
are not mixed. We postulate that the lowest excitation of 
the state |1) is a state |1*) of mixed symmetry, reachable 
by acting on the vacuum with the zero-momentum spin 
operator

s(z) = *)• (18)
x,y

We shall often refer to the corresponding Schrodinger- 
picture operator s =  s(0). W ithout loss of generality we 
introduce only one new state as

s | l )  =  7 11) +  <511*) • (19)

The corresponding excitations in the other vacuums are 
reached by a Z ( 3) transformation R  in analogy with Eq. 
(10) as follows:

|2 * ) = i2 | l * ) ,  |3*) =  R  |2* ) . (20)

Since R s R _1 =  exp(—2m/3 )s ,  the Z (3) symmetry re­
quires

S |2) =  e2™/3(7 |2 )+ .5 |2 * » , (21)
s |3) =  e~2,ri/,3(7  |3) +  6 |3*)). (22)

Now just as mixing between the degenerate vacuums 
leads to a symmetric state |0s) and two mixed symmetry 
states |0mk}  (k — 1,2 labels the two degenerate compo­
nents), we expect mixing among the excited-state coun­
terparts to result in a symmetric state | Is) and a mixed 
symmetry state |1 mk).  W ith this notation we are im­
plicitly identifying these states with the levels of Fig. 1.
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From the 63 symmetry we then obtain explicit formu­
las for the matrix elements of the spin operator between 
these states:

^  \(ls\ s |0mfc) |2 =  <52, 
:=1,2

|{0s| s |0mfc}|2 =  7 2,
k =  1,2

(23)

X )  |<0s| s |lmA;)|2 =  62, 
k = 1,2

|( ls |s |lm fc ) |5
fc— 1 , 2

: 7

is weak the symmetric operator |s |2 satisfies

|( ls | |s |2 |0s) |2 =  ^  |(lrafc| \s\2 |0rafc)|2 . (24) 
fc=l,2

C . C o rre la tio n s

We now write working formulas for the correlations be­
tween the spin operators s and |s |2, based on the lowest- 
lying levels discussed above.

First, we observe that matrix elements must obey se­
lection rules of the £3 symmetry. For example, the spin 
operator s is of mixed symmetry. The two components of 
the operator are just (R es,Im s). Thus matrix elements 
(n\ s |ra) vanish if |ra) and \n) are both symmetric. Since 
|s |2 is a symmetric operator, matrix elements (n\ |s |2 |ra) 
vanish if |ra) and |n) are not in the same Ss representa­
tion.

Therefore, the leading nonvanishing terms in the cor-
We note also that if mixing among the degenerate states relation for |s |2 from Eq. (8) are

( |S(z)|2|S(0)|2> =  1(0*1 N 2 |0s)|2 +  |(ls| H 2 |0s)|2 [e~ElaZ +  e~Ela<'L~z ]̂
- f  | ( l r a |  | s | 2 | 0 r a ) | 2 [e ~^E l rn - Eorn) z  +  e - ( E irn - E 0rn) ( L - z ) ^ e - E 0 mL^

and for s it is

- | (0ra| 5 |0s) |2[e Eom2-f e E°m(L *)]-f | (lra| s |0s) n e  
+  | ( l s |  S |0ra) \2 [e - ( E l s ~ E 0m )z  e - ( E i s - E o m ) ( L - z ) ^ e -

4-1 (lra| 5 |0ra) | [e2 EOm)z _j_ g — (Ei

j2 j"g E lrnZ

Eom,L
L

+  e— E l m  ( L  — z )

(25)

(26)

The six transitions taken into account in these expres­
sions are indicated in Fig. 1.

Clearly, in order for the several transitions for be dis­
cernible in the fits to correlation functions, it is neces­
sary that the spectral components be both strong and 
well separated. With our data we are able to distinguish 
two spectral components for the mixed operator and find 
only one significant spectral component for the symmet­
ric operator. These transitions correspond to dropping 
all terms with the factor exp(—E 0rnL). For the mixed 
operator, this approximation can be justified as follows. 
(1) Over the range (3 <  /3C, the factor exp(-£?0m- )̂ is 
small (at the largest, of order 1/10). This factor multi­
plies the third term on the right-hand side (RHS) in both 
expressions and the fourth term in the second expression. 
Appealing to our phenomenological model and Eqs. (23) 

____________________________________________________I
<|s(z)|2|s(0)|2|) =  Ax +  A 2[e~E'°z +  e~E^ L~ %

and (24), which makes it possible to compare the sec­
ond and third terms, we see that we may drop terms in 
exp(—EomL) from the summation, thereby eliminating 
all transitions leading to the level Eom• (2) Over the 
range (3 >  {3C1 the spectral lines for all transitions from 
the levels l s  and Ira to Os and Ora are too close to be 
resolvable with our statistics. Thus the second spectral 
component in the mixed operator is presumably a com­
posite of all three transitions permitted by the selection 
rules. For the symmetric operator our failure to locate 
the second spectral component presumably reflects an in­
sufficiently strong coupling to this operator.

We are left, finally, with a three-parameter expression 
for the symmetric operator and a four-parameter expres­
sion for the mixed operator:

(s(z)s*( 0)) =  Cx[e -EomZ -he- E 0m ( L - z ) j  C 2[e~E  1" + e - E i m ( L - z >]•
(27)

I I I .  N U M E R IC A L  S IM U L A T IO N

Since the simulation of tunneling effects requires an 
algorithm that gives efficient and rapid sampling of the 
phase space, particularly in the crossover region, we used 
the Swendson-Wang (SW) algorithm [10]. The code was 
checked by comparing measured observables in selected 
extensive runs with results from simulations using a heat

\-----------------------------------------------------------------
bath algorithm.

Simulations were carried out on cubic lattices of size 
iV3, for N  =  16, 20, 24, 30, 48, and 64 in order to confirm 
the first-order nature of the phase transition through the 
use of finite-size scaling analysis. For this purpose we 
measured the specific heat and the fourth-order cumu- 
lant. Table I summarizes the extent of this data sam­
ple. The majority of the simulations were carried out on
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TABLE I. D ata sample for cubic lattices.

V (3 Sweeps (10 )
16J
203
243
303
483
643

0.3663
0.3665
0.3667
0.3669
0.3670
0.36705

0.6
0.5
0.7
0.7
0.5
0.5

“cylindrical” lattices to obtain the spectrum of the trans­
fer matrix. These lattices were of size 120 x 202 for 18 
values of {3 and with size 120 x 302 for 17 values of /3, 
as summarized in Table II. Runs of as many as 2 x 106 
sweeps made it possible to gain control of the correlated 
data and to obtain good estimates of the parameter er­
rors.

A . S im u la tio n s  o n  cu b ic  la t t ic e s

In Fig. 2 is shown a histogram in the average energy for 
the 643 lattice near /3C. A clean separation of the phases 
is apparent. During this 250000-sweep simulation two 
tunneling events were observed, in each case with the 
order parameter passing cleanly from one peak to the 
other in a single update step. The importance of finite- 
size scaling for determining the order of a phase tran­
sition has been repeatedly emphasized [6, 7]. Although 
these references already provide excellent confirmation of 
the first-order character of the phase transition, our high 
statistics results make an even stronger case. Neverthe­
less, we present the finite-size scaling results for the sake 
of completeness. The fourth-order cumulant [11],

VL{(3,V) =  1 - (E4)
3 {E2f

(28)

TABLE II.
sweeps.)

D ata sample for cylindrical lattices. (106

(3 120 x 202 120 x 302
0.3650 1.0 1.0
0.3655 — 1.0
0.3660 1.0 1.0
0.3665 1.0 1.0
0.3668 2.0 1.0
0.3669 2.0 2.0
0.36695 2.0 2.0
0.3670 2.0 2.0
0.36705 2.0 2.0
0.3671 2.0 2.0
0.36715 2.0 2.0
0.3672 3.0 2.0
0.36725 2.0 2.0
0.3673 1.0 1.0
0.3674 1.0 1.0
0.3675 1.0 1.0
0.3678 1.0 —
0.3680 1.0 1.0
0.3685 1.0 —

FIG. 2. Histogram in the average energy a t f3 = 0.36705 
(near the critical value) on a 643 lattice, showing cleanly sep­
arated coexisting phases.

is minimum near the crossover (3C. At a continuous phase 
transition, the minimum value Vl ([3c,V )  tends to |  in 
the infinite volume limit. At a first-order phase transi­
tion, however, the limit is not so constrained, but obeys 
a scaling law,

VL(V)t 1 -
{E% +  E l )2 
12 (jE+J5L)2' + o (  i / n (29)

where E+  and E -  are the most probable energies in the 
two coexisting phases.

The minimum value of the cumulant was found by com­
bining measurements at a range of (3 values near /3C, using 
a Ferrenberg-Swendson “scanning” or “histogram” tech­
nique [12]. The resulting minimum values are plotted in 
Fig. 3 . A linear fit yields the asymptotic value 0.647(3), 
clearly distinct from | .

We turn now to the specific heat. At finite volume the 
specific heat Cv peaks at the crossover. The maximum 
value CVjmax increases with increasing volume. If the 
phase transition is first order, the peak scales as

C v ,m a x  — CL +  bV. (30)

The maximum is again determined using the Ferrenberg- 
Swendson technique. These values are plotted in Fig. 4. 
A linear increase is apparent.

A value of /3C can be fixed, either from the peak in

0 . 6 5 0

0 . 6 4 5

0 . 6 4 0

0 . 6 3 5

0 . 6 3 0

0 . 6 2 5
0.0 0.1 0.2 

1 0 0 0 V -1
0 . 3

FIG. 3. Finite-size scaling of the minimum in the fourth- 
order cumulant.
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1 0 0 0 _1V

FIG. 4. Finite-size scaling of the peak in the specific heat.

the specific heat, or from the minimum of the cumulant 
Vl - The two values do not necessarily agree at finite 
volume, but should agree in the infinite volume limit. In 
the infinite volume limit we find (3C,oo =  0.36704(2) in 
agreement with Gavai, Karsch, and Petersson [6].

B . S im u la tio n s  o n  c y lin d r ic a l la tt ic e s

Measurements on the asymmetrical lattices were taken 
every 250 SW sweeps. Observables recorded were these: 
the spin averages s(z)  as a function of z [Eq. (18)], the 
average energy

E  =  p J 2 R e s *Si+ » /V ’ (31)
(i/z)

and the number of clusters N c. Subsequent analysis pro­
duced the symmetric and mixed operator correlations 
and spectrum, the mean spins, and the projected-spin

P

FIG. 6. The same, bu t for the 302 x 120 lattice.

order parameter

5proj =  max Re(s, e27r2//3s, e~2nl 3̂s ) , (32)

where s =  '$2 s i /V-  Also constructed were interface 
statistics. They are described below. For observables 
not discussed here, see Ref. [8].

(a) Spectrum of the transfer matrix. Correlations in 
the operators |«(z) |2 and s(z)  were measured and fit to 
the formulas (27) for both transverse sizes 202 and 302. 
As usual, fluctuations in the measurements were strongly 
correlated in z, so it was necessary to determine these 
correlations and incorporate them in the x 2 analysis. Be­
cause of the large size of the data sample, it was possi­
ble to use all principal factors in the analysis of covari­
ance. The spectrum was determined from a global fit 
to the data. The fitting range began at a minimum dis­
tance zmin and extended to the full length of the lattice.

P

FIG. 5. Energy level E\s of symm etry S  for the 202 x 120 
lattice, as a function of /?.

P
FIG. 7. Energy levels E0m and Eim of symm etry M  for 

the 202 x 120 lattice, as a function of (3.
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tices of similar geometry in SU(3) Yang-Mills theory [4]. 
As we have seen in the simple model, this feature is an 
expected consequence of finite volume tunneling between 
the degenerate ordered phases.

(b) Tunneling statistics. In Fig. 9 we plot the slice 
spin averages s{z)  for a representative configuration at 
/3 >  /3C, showing tunneling between the ordered phases. 
We devised two statistics: ./Vdo> to give a measure of 
the number of phase boundaries between the disordered 
and one of the ordered domains, and a statistic iVoo» for 
phase boundaries between two ordered domains. A por­
tion of the lattice was considered to be in the disordered 
phase on the plane z, if |s(z)| <  0.23 for at least three 
consecutive values of z. If |s(£)| >  0.23 for at least three 
consecutive values of z, the lattice plane was considered 
to be in one of the three ordered phases, according to  
the value of args(z). The value 0.23 was chosen to cor­
respond to the minimum of the histogram of occurrences 
of values of \s\ at the crossover, and so corresponds to a 
value intermediate between the disordered and ordered 
phases. The requirement of three consecutive planes was 
adopted to permit occasional excursions from the ideal 
value of 0.23 within a single phase. We encountered no 
configurations that did not have at least three consecu­
tive planes. Indeed the phase coherence was extremely 
high with many lattices consisting of a single phase.

Obviously our classification criteria are arbitrary. Our 
approach differs from that of Karsch and Patkos [13] who 
classified all boundaries as type OO for /? >  /3C. The am­
biguity all methods must deal with is distinguishing a 
broad interface between two ordered phases from a tran­
sition to an intermediate disordered phase. Any defini­
tion must recognize, however, that in perturbation the­
ory, finite volume mixing necessarily produces a disor­
dered phase intermediate for j3 slightly above (3C.

Shown in Figs. 10-12 are results for the measure of the 
mean numbers N qq and N ĵ q , It is apparent that with

TABLE III. Effective masses and couplings for the 120 x 202 lattice.

0 A i A 2 E u C i E o m c 2

0 .3 6 5 0 2 .3 8 (1 ) 0 .5 (1 ) 0 .2 3 1 (2 7 ) 2 .9 (1 ) 0 .1 6 7 (5 ) 0 .1 8 (1 1 ) 0 .5 4 (2 8 )
0 .3 6 6 0 3 .2 0 (3 ) 0 .9 4 (7 ) 0 .1 6 8 (1 0 ) 3 .3 (9 ) 0 .1 0 (2 ) 1 .0(9) 0 .2 0 (7 )
0 .3 6 6 5 4 .3 6 (4 ) 1 .6 (2) 0 .1 1 8 (9 ) 5 .8 (1 ) 0 .0 7 2 (1 ) 0 .3 1 (4 ) 0 .5 4 (1 1 )
0 .3 6 6 8 6 .1 1 ( 6 ) 2 .6 (3 ) 0 .1 0 9 (8 ) 8 .0 (1 ) 0 .0 4 8 (1 ) 0 .3 0 (5 ) 0 .3 4 (1 1 )
0 .3 6 6 9 7 .1 7 (7 ) 2 .5 (2 ) 0 .0 8 8 (6 ) 9 .3 (1 ) 0 .0 3 9 7 (6 ) 0 .3 4 (9 ) 0 .4 1 (1 2 )
0 .3 6 6 9 5 7 .8 (1 ) 2 .9 (4 ) 0 .0 9 5 (1 1 ) 10 .1 (2 ) 0 .0 3 7 (1 ) 0 .3 4 (1 ) 0 .4 1 (1 8 )
0 .3 6 7 0 8 .5 1 (8 ) 2 .7 (4 ) 0 .0 8 8 (1 0 ) 10 .8 (1 ) 0 .0 3 4 6 (6 ) 0 .2 4 (6 ) 0 .3 1 (1 6 )
0 .3 6 7 0 5 9 .5 9 (9 ) 2 .8 (4 ) 0 .0 8 4 (9 ) 11 .8 (1 ) 0 .0 3 0 2 (4 ) 0 .2 6 (8 ) 0 .3 8 (1 7 )
0 .3671 10 .5 (1 ) 3 .0 (4 ) 0 .0 8 4 (9 ) 1 2 .4 (1 ) 0 .0 2 7 2 (4 ) 0 .3 5 (5 ) 0 .2 8 (8 )
0 .3 6 7 1 5 11 .8 (1 ) 2 .8 (4 ) 0 .0 8 2 (9 ) 1 3 .2 (3 ) 0 .0 2 3 3 (6 ) 0 .6 (3 ) 0 .1 2 (5 )
0 .3 6 7 2 13 .2 (1 ) 2 .8 (1 ) 0 .0 8 2 (3 ) 1 4 .1 (4 ) 0 .0 2 0 7 (6 ) 0 .5 (3 ) 0 .1 1 (7 )
0 .3 6 7 2 5 14 .4 (1 ) 2 .6 (2 ) 0 .0 8 1 (5 ) 14 .5 (6 ) 0 .0 1 8 0 (7 ) 0 .8 (4 ) 0 .1 0 (5 )
0 .3 6 7 3 15 .8 (2 ) 2 .8 (4 ) 0 .0 8 5 (1 1 ) 1 5 .4 (4 ) 0 .0 1 5 9 (7 ) 0 .8 (2 ) 0 .1 4 (9 )
0 .3 6 7 4 18 .6 (2 ) 1 .8 (2 ) 0 .0 6 8 (1 2 ) 1 6 .2 (3 ) 0 .0 1 2 2 (5 ) 1 .8 (8) 0 .2 1 (7 )
0 .3 6 7 5 2 0 .7 (2 ) 1 .5 (3) 0 .0 7 6 (1 4 ) 1 6 .9 (3 ) 0 .0 1 0 2 (5 ) 0 .9 (3 ) 0 .1 8 (8 )
0 .3 6 7 8 2 5 .5 (1 ) 1 .3 (1) 0 .1 4 2 (1 1 ) 1 5 .6 (5 ) 0 .0 0 3 9 (6 ) 1 .3 (1 ) 0 .1 4 (3 )
0 .3 6 8 0 2 7 .2 (1 ) 1 .1 2 (5 ) 0 .1 7 5 (9 ) 1 5 .9 (4 ) 0 .0 0 2 9 (4 ) 1 .2 (2 ) 0 .2 3 (4 )
0 .3 6 8 5 3 0 .4 (1 ) 1 .0 3 (6 ) 0 .2 5 6 (1 3 ) 15 .7 (3 ) 0 .0 0 0 7 (3 ) 1 .2 (1 ) 0 .2 8 (3 )

0.6

0 . 4

w

0.2

0.0
0 . 3 6 6  0 . 3 6 8  0 . 3 7 0

P
FIG. 8. The same, bu t for the 302 x 120 lattice.

The minimum distance was varied until a semblance of 
a plateau in the spectrum was reached, within the deter­
mined statistical errors. The values quoted are based on 
the minimum distance that gave the highest confidence 
level for the fit. The minimum distance thus determined 
varied smoothly from 2 for the mixed operator at the 
smallest (3 where the correlation length is shortest to 8 
at the largest /? where the correlation length is longest. 
For the symmetric operator zmin was 5 for the smallest 
and largest /?’s, ranging gradually to 15-20 for the inter­
mediate values where the correlation length is longest. 
The resulting spectrum is summarized in Figs. 5-8 and 
in Tables III and IV. There is obviously a strong re­
semblance with features of the simple model of Sec. IIB. 
From Figs. 7 and 8, we see that the correlation length 
tends to infinity as /? increases above /3C, just as with lat­

_T------- j------- (------- r_ —j- I |—

3 0  X 1 2 0

°  E ln

0m
_l___I__ I I i
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TABLE IV. Effective masses and couplings for the 120 x 302 lattice.
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P Ai a 2 Eu Ci Eom c 2 E\m
0.3650 1.02(1) 0.2(1) 0.30(5) 1.2(1) 0.182(8) 0.1(1) 0.39(16)
0.3655 1.11(1) 0.23(6) 0.25(3) 1.29(8) 0.157(6) 0.15(7) 0.45(14)
0.3660 1.23(1) 0.38(8) 0.25(3) 1.56(2) 0.143(3) — —
0.3665 1.48(1) 0.44(9) 0.15(2) 1.74(9) 0.101(4) 0.24(9) 0.30(6)
0.3668 2.03(3) 0.74(6) 0.065(7) 2.3(2) 0.052(3) 0.59(18) 0.16(3)
0.3669 3.21(6) 1.28(5) 0.061(4) 3.7(1) 0.031(1) 0.72(12) 0.13(1)
0.36695 4.09(9) 1.61(4) 0.044(4) 5.2(1) 0.0262(6) 0.39(4) 0.19(2)
0.3670 6.3(2) 2.02(7) 0.038(5) 7.3(1) 0.0185(3) 0.41(3) 0.20(2)
0.36705 9.9(3) 2.1(1) 0.033(6) 9.9(1) 0.0133(2) 0.38(3) 0.21(3)
0.3671 14.4(2) 1.6(1) 0.039(6) 11.8(1) 0.0092(2) 0.55(4) 0.14(1)
0.36715 17.4(3) 1.3(2) 0.030(9) 12.6(1) 0.0064(2) 0.65(3) 0.16(1)
0.3672 19.6(1) 0.98(3) 0.066(4) 12.5(2) 0.0044(2) 0.75(4) 0.12(1)
0.36725 20.9(1) 0.85(8) 0.085(7) 12.2(2) 0.0028(2) 0.86(3) 0.12(1)
0.3673 21.6(1) 0.7(1) 0.09(1) 12.6(2) 0.0027(3) 0.73(4) 0.13(1)
0.3674 23.1(1) 0.5(2) 0.11(2) 12.3(3) 0.0011(4) 0.69(4) 0.15(2)
0.3675 24.1(1) 0.5(1) 0.13(1) 12.7(2) 0.0010(3) 0.8(1) 0.19(2)
0.3680 27.8(1) 0.50(7) 0.22(2) 14.0(3) 0.0001(3) 0.50(5) 0.22(1)

our definitions of these boundaries, a transition between 
two ordered phases is unlikely to take place directly, but 
proceeds through what we identify as a disordered phase 
intermediate. (Figure 10 shows the number of OO phase 
boundaries for the 120 x 202 lattices. The correspond­
ing number for 120 x 302 is negligible.) This “complete

ox]u

FIG. 9. Plot of the complex modulus and argument of 
the spin vector s(z) vs z (averaged over the transverse plane) 
for a typical configuration selected from the data sample at 
/3 =  0.3672 (near the phase transition) on a 202 x 120 lat­
tice. The plot symbol indicates the phase to which the lattice 
plane is assigned, based on modulus and argument. The ver­
tical bars indicate an assigned phase boundary, based on our 
arbitrary rule that at least three consecutive planes must be 
classified in that phase. The horizontal line in the modulus 
plot indicates our division between ordered and disordered 
phases. Two ordered-ordered phase boundaries appear in this 
configuration, each with a disordered phase intermediate.

wetting” effect was reported previously in SU(3) gauge 
theory [14] and the Potts model [13].

As a test of the sensitivity of the phase boundary statis­
tics to our definition of the phases, we analyzed the re­
sults for our 203 x 120 lattices at (3 =  0.3672 and at 
/3 — 0.3675 for a variety of choices of the required num­
ber of consecutive planes with s(z)  in the same phase. 
Results are tabulated in the first four columns of Table
V. As expected, the number iNfoo decreases as we require 
more consecutive planes before deciding that a transition 
to a new phase has taken place. However, the number 
N o o  of direct ordered-ordered phase boundaries is still 
extremely small. The fact that N^o  decreases more dra­
matically than the increase in N o o  indicates that the 
small pockets of low |s(2)| are often sandwiched between 
regions with larger |s(z)|, but with the same orientation. 
Thus these results support our assumption that these

FIG. 10. Average number of phase boundaries separating 
ordered symmetry phases for 120 x 202.
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FIG. 11. Average number of phase boundaries separat­
ing a  disordered phase from an ordered phase for 120 x 202. 
Crosses are measured directly. Octagons are calculated from 
the spectrum  in the four-component model.

small pockets are more properly associated with the or­
dered phase that surrounds it, and should not be counted 
as a complete phase boundary.

Interpreting these results in terms of the model of 
Sec. IIB , we find that e <C A. Thus the approximation, 
Eqs. (15)-(17), applies. Inverting these expressions, the 
parameters A and A of the simple model can then be 
derived directly from the observed spectrum through

A =  Eis  2i£om? (33)
A =  ^ E o m ( E i s — £ ? o m ) /3 .  ( 3 4 )

Let us compare the Potts phase boundary statistics 
with what is expected in the four-component model. We 
do so in the complete wetting approximation that e =  0. 
With e =  0, necessarily N dd =  0, and a simple compu­
tation gives 7Vdo- Since A in the four-component Hamil­

5

4

3
otJ

2

1

0
0 . 3 6 5  0 . 3 6 6  0 . 3 6 7  0 . 3 6 8  0 . 3 6 9

P
FIG. 12. Same as Fig. 11, but for 120 x 303.

tonian mixes the disordered and ordered states, we can 
introduce a chemical potential for DO boundaries by re­
placing A with AeM. Thus the number of DO boundaries 
is just

<jVDO) = A ^ l n Z ,  (35)

but from Eqs. (2), (6), and (15) we have ln Z  «  
—LEq3(X), so

(Nd o ) «  6LA2/ \ / A 2 +  12A2. (36)

Using this expression at (3 =  0.3672 for the 202 x 120 
lattice we calculate (Nd o ) =  3.7(4), and at /? =  0.3675, 
2.1(7). The rather large uncertainty is due to the uncer­
tainties in the spectrum. Comparing these values with 
those tabulated in Table V, we see that the values agree 
if the consecutive run criterion is 3 or 4, thereby justify­
ing our procedure for counting phase boundaries.

In the four-component model it is possible to create do­
mains of width one slice. Clearly, if we impose the same 
consecutive-run criterion on the four-component model, 
we overlook genuine boundaries and bias the statistics. 
We analyzed this effect using a simple numerical simula­
tion of the corresponding one-dimensional statistical sys­
tem. Results for the two cases of interest are tabulated 
in the last two columns of Table V for comparison. The 
largest uncertainty in these results arises from the uncer­
tainty in the determination of the spectral values E \ s and 
Eom, which, through Eq. (34), determine the parameters 
of the four-component model. To make a quick estimate 
of the error propagation, we use the exact result for a 
run length of one above (36). That result is quoted in 
the table. We see that going from a run of one to a run 
of three reduces (A/bo) by about 0.5 at the lower value of 
/3 and by about 0.3 at the upper value. These systematic 
errors are comparable or smaller than the uncertainties 
arising from the determination of the spectrum, so we 
ignore them. (We emphasize that we should not com­
pare the tabulated values for the two model calculations 
line by line, since in our interpretation the variation in 
the Potts model value is attributed to a possible nontriv­
ial interface width, the counting of false boundaries, and 
the omission of genuine boundaries, whereas the varia­
tion in the four-component model value is due solely to 
the omission of genuine boundaries.)

Returning to Eq. (36), we compute the predicted value 
of N do in the four-component model for runs of length 
three for all (3 >  (3c for both 202 x 120 and 302 x 120 
lattices. Results are plotted together with the observed 
number in Figs. 11 and 12. W ith our criteria for identify­
ing a phase boundary the agreement is quite satisfactory.

(c) Surface tension. The surface tension between two 
ordered phases can be estimated in perturbation theory 
through

A =  6e~^aoT>A. (37)

A formula of this type was conjectured by Brezin and 
Zinn-Justin [16]. The quantity on the left is the tran­
sition probability between two ordered phases via a dis­
ordered phase intermediate in second-order perturbation
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TABLE V. Phase boundary statistics as a function of run count for the 120 x 202 lattice.
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Potts model Four-component model
p run N'do N oo N vo N oo
0.3672 1 10.94(7) 0.175(7) 3.8(4) 0.00
0.3672 2 5.67(4) 0.022(2) 3.5(4) 0.02
0.3672 3 4.16(3) 0.018(2) 3.3(4) 0.04
0.3672 4 3.44(3) 0.032(2) 3.0(4) 0.06
0.3672 5 2.98(2) 0.050(3) 2.8(4) 0.07
0.3672 10 1.74(2) 0.154(6) 2.0(4) 0.09
0.3675 1 6.06(10) 0.108(9) 2.2(7) 0.00
0.3675 2 3.03(6) 0.014(3) 2.0(7) 0.01
0.3675 3 2.19(5) 0.012(2) 1.8(7) 0.02
0.3675 4 1.71(4) 0.013(2) 1.7(7) 0.02
0.3675 5 1.41(4) 0.027(4) 1.6(7) 0.02
0.3675 10 0.73(2) 0.078(7) 1.0(7) 0.02

theory, based on the four-component Hamiltonian, and 
the quantity on the right is the Boltzmann weight for 
the interface. The prefactor 8 takes account of capillary 
waves on the interface. It is independent of the transverse 
size of the lattice [16]. Following Grossman et al. [17], 
we treat 6 as an unknown constant and determine aoD  
by comparing results from the two lattice sizes. Thus 
estimated, it is plotted in Fig. 13.

IV . S U M M A R Y  A N D  D IS C U S S IO N

Our high statistics study of the three-state three­
dimensional Potts model using the Swendson-Wang up­
dating scheme once again confirms the first-order char­
acter of the phase transition. At volumes as large as 643 
there is a clear separation of coexisting phases.

Exploiting an S3 symmetry in lattices with one long 
dimension, we have obtained the lowest spectral levels of 
the transfer matrix in this model and find a strong re­
semblance with the spectrum of a simple four-component 
model, featuring a first-order phase transition. This anal­
ysis provides a clear explanation of the mechanism that

P

FIG. 13. Ordered-disordered interface surface tension de­
term ined by spectral m ethods in the four-component model.

gives rise to an infinite correlation length in the low- 
temperature phase.

The statistics of phase boundaries at low temperature 
are consistent with a perturbative treatment of tunnel­
ing in the four-component model. We find that ordered- 
ordered phase boundaries involve an intermediate disor­
dered phase consistent with complete wetting. We ob­
tained the ordered-disordered surface tension from the 
spectrum.

One important goal of finite-size spectral analysis is 
to remove tunneling-related finite-size effects from the 
spectrum, with the hope of extracting the infinite vol­
ume values of the excitation spectrum. Would this be 
feasible using our methods? Unfortunately, to remove 
significant finite-size effects apparently requires introduc­
ing more parameters into the four-component model and 
into our fitting functions than data of the quality of ours 
warrants. The four-component model would have to be 
augmented by at least four more components. Thus we 
must rely upon alternate, empirical methods. For exam­
ple, Fukugita and Okawa [7] calculate in a cubic volume. 
In the vicinity of the phase transition, they classify con­
figurations into two groups: disordered and ordered, ac­
cording to the value of the global-order parameter. They 
then measure “pure-phase” correlation lengths in each 
subset. For small volumes there is a region of overlap 
in which this classification risks misidentification of the 
phase. The contamination of incorrectly classified con­
figurations decreases as the volume is increased and the 
overlap decreases. Thus one may hope for an empirically 
determined extrapolation to the infinite volume limit.
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