25 research outputs found

    Deep-seated lateral velocity variations beneath the GRF array inferred from mislocation patterns and P residuals

    Get PDF
    The analysis of mislocation patterns and the three-dimensional inversion of travel-time residuals for P waves measured at the GRF array reveal the existence of strong lateral velocity variations beneath the array. The most expressive phenomenon consists of an increase of P-wave velocities in the upper mantle from north to south, in addition to a possible thickening of the lithosphere to the south; especially the Moldanubian part of the Bohemian massif located to the southeast of the GRF array is characterized by high P-wave velocities in the upper mantle. The systematic change of the magnitude of the residual variation across the array, depending on the incidence angle for P waves, leads to the conclusion that a low-velocity zone exists in the upper mantle to the northeast of subarray A. The appearance of low-velocity material in the vicinity of the border between the two tectonic units, namely the Saxothuringian zone to the north and the Moldanubian zone to the south, might be connected to the deep structure of the graben area which extends to the northeast into the Egergraben.           ARK: https://n2t.net/ark:/88439/y046952 Permalink: https://geophysicsjournal.com/article/224 &nbsp

    Lateral Changes of seismic anisotropy in the upper mantle around the Northern Apennines

    Get PDF
    We performed three-dimensional analysis of anisotropic parameters of body waves to develop a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines within the multidisciplinary project RETREAT. Simultaneous extension within the convergent margin can be the consequence of the retreat of the subducting Adriatic plate from the orogenic front, caused by sub-lithosphere mantle processes that seismic anisotropy can help to decipher. We use data recorded by the RETREAT temporary array consisting of 35 stations complemented by data of permanent INGV observatories. Currently, 18-months of data are available from some stations, representing half of the passive experiment duration. We detect many examples of core-refracted shear-wave splitting within the upper mantle, and observe both distinct lateral variations of anisotropic parameters and their dependence on the direction of propagation. In particular, the fast shear-wave polarization changes from slab-perpendicular to slab-parallel along the Apennines chain. There is also a distinct change in the anisotropic signals across the presumed boundary of the Tyrrhenian and Adriatic micro-plates. Variations of the splitting time delays and orientation of the fast shear waves, together with considerations on the geodynamics of the area, seem to exclude simple sub-lithosphere mantle corner flow as the only source of the observed anisotropy. Alternate models include (1) a frozen-in fabric of different lithosphere domains, and (2) complex mantle flow associated with the Plio-Pleisocene uplift and extension of Tuscany

    Moho depth across the Trans-European Suture Zone from P-and S-receiver functions

    Get PDF
    The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal Vp/Vs ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal Vp/Vsratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson’s ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson’s ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6km for the most pronounced basins in the study area, while thicknesses of less than 4km are found within the craton, central Germany and most of the Czech Republic.Peer reviewe

    Lithosphere structure of the NE Bohemian Massif (Sudetes) A teleseismic receiver function study

    No full text
    In 2004 and 2005 a passive seismic experiment was carried out in the northern and northeastern part of the Bohemian Massif (Sudetes) to study the lithospheric structure. We present results from Ps and Sp receiver function analyses. With one exception, Moho depth at stations in the northwestern part of the study area varies between 28 and 32 km. Thicker crust up to 35 km was mapped toward the south (Moldanubian unit) and toward the east (Moravo–Silesian and Brunovistulian units) confirming results from previous active seismic measurements. There exists a relatively sharp step in Moho depth between units of the central Sudetes (~ 30 km) and the Moravo–Silesian unit (~ 35 km). The vp/vs ratios inverted from primary and multiple Moho Ps conversions hint for different crustal compositions of the units. Toward the Carpathian thrust we have no clear indications for any crustal root or slab beneath the western Carpathians. However, our data suggests a deepening of the Moho or at least a complicated crust–mantle transition in this area. Additional Ps phases were observed between 6 and 10 s delay time in the Sudetes. These phases cannot be explained by Moho reverberations, but are most probably caused by low velocity zones in the middle crust or lithospheric mantle as shown by modeling of theoretical receiver functions. The stations showing these abnormal phases are located in the area of Permo-Carboniferous basins on probably Teplá–Barrandian crust. Therefore we assume that the phases hint at a mid-crustal low velocity zone between 16 and 20 km depth, which is interpreted as a felsic solidified magma reservoir of the Permo-Carboniferous volcanism beneath the Sudetic Basins. Sp receiver functions show phases with negative polarity at 9 to 12 s lead time on average, which we interpret as lithosphere–asthenosphere boundary at about 80 to 110 km depth
    corecore