8,817 research outputs found

    Correlation function algebra for inhomogeneous fluids

    Full text link
    We consider variational (density functional) models of fluids confined in parallel-plate geometries (with walls situated in the planes z=0 and z=L respectively) and focus on the structure of the pair correlation function G(r_1,r_2). We show that for local variational models there exist two non-trivial identities relating both the transverse Fourier transform G(z_\mu, z_\nu;q) and the zeroth moment G_0(z_\mu,z_\nu) at different positions z_1, z_2 and z_3. These relations form an algebra which severely restricts the possible form of the function G_0(z_\mu,z_\nu). For the common situations in which the equilibrium one-body (magnetization/number density) profile m_0(z) exhibits an odd or even reflection symmetry in the z=L/2 plane the algebra simplifies considerably and is used to relate the correlation function to the finite-size excess free-energy \gamma(L). We rederive non-trivial scaling expressions for the finite-size contribution to the free-energy at bulk criticality and for systems where large scale interfacial fluctuations are present. Extensions to non-planar geometries are also considered.Comment: 15 pages, RevTex, 4 eps figures. To appear in J.Phys.Condens.Matte

    Practical guidelines for modelling post-entry spread in invasion ecology

    Get PDF
    In this article we review a variety of methods to enable understanding and modelling the spread of a pest or pathogen post-entry. Building upon our experience of multidisciplinary research in this area, we propose practical guidelines and a framework for model development, to help with the application of mathematical modelling in the field of invasion ecology for post-entry spread. We evaluate the pros and cons of a range of methods, including references to examples of the methods in practice. We also show how issues of data deficiency and uncertainty can be addressed. The aim is to provide guidance to the reader on the most suitable elements to include in a model of post-entry dispersal in a risk assessment, under differing circumstances. We identify both the strengths and weaknesses of different methods and their application as part of a holistic, multidisciplinary approach to biosecurity research

    Development of cathodic electrocatalysts for use in low temperature H2/O2 fuel cells with an alkaline electrolyte Quarterly report, Jul. 1, 1965 - Jun. 30, 1967

    Get PDF
    Cathodic electrocatalyst materials studied for use in low temperature hydrogen oxygen fuel cells with alkaline electrolyt

    New electrocatalysts for hydrogen-oxygen fuel cells

    Get PDF
    Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C

    A comparative analysis of parallel processing and super-individual methods for improving the computational performance of a large individual-based model

    Get PDF
    Individual-based modelling approaches are being used to simulate larger complex spatial systems in ecology and in other fields of research. Several novel model development issues now face researchers: in particular how to simulate large numbers of individuals with high levels of complexity, given finite computing resources. A case study of a spatially-explicit simulation of aphid population dynamics was used to assess two strategies for coping with a large number of individuals: the use of ‘super-individuals’ and parallel computing. Parallelisation of the model maintained the model structure and thus the simulation results were comparable to the original model. However, the super-individual implementation of the model caused significant changes to the model dynamics, both spatially and temporally. When super-individuals represented more than around 10 individuals it became evident that aggregate statistics generated from a super-individual model can hide more detailed deviations from an individual-level model. Improvements in memory use and model speed were perceived with both approaches. For the parallel approach, significant speed-up was only achieved when more than five processors were used and memory availability was only increased once five or more processors were used. The super-individual approach has potential to improve model speed and memory use dramatically, however this paper cautions the use of this approach for a density-dependent spatially-explicit model, unless individual variability is better taken into account

    Coupled Fluctuations near Critical Wetting

    Full text link
    Recent work on the complete wetting transition has emphasized the role played by the coupling of fluctuations of the order parameter at the wall and at the depinning fluid interface. Extending this approach to the wetting transition itself we predict a novel crossover effect associated with the decoupling of fluctuations as the temperature is lowered towards the transition temperature T_W. Using this we are able to reanalyse recent Monte-Carlo simulation studies and extract a value \omega(T_W)=0.8 at T_W=0.9T_C in very good agreement with long standing theoretical predictions.Comment: 4 pages, LaTex, 1 postscript figur
    • …
    corecore