40 research outputs found

    Birth after TESE–ICSI in a man with hypogonadotropic hypogonadism and congenital adrenal hypoplasia linked to a DAX-1 (NR0B1) mutation

    Get PDF
    DAX1/NR0B1 mutations are responsible for X-linked congenital adrenal hypoplasia (AHC) associated with hypogonadotropic hypogonadism (HH). Few data are available concerning testicular function and fertility in men with DAX1 mutations. Azoospermia as well as failure of gonadotrophin treatment have been reported. We induced spermatogenesis in a patient who has a DAX1 mutation (c.1210C>T), leading to a stop codon in position 404 (p.Gln404X). His endocrine testing revealed a low testosterone level at 1.2 nmol/l (N: 12–40) with low FSH and LH levels at 2.1 IU/l (N: 1–5 IU/l) and 0.1 IU/l (N: 1–4 IU/l), respectively. Baseline semen analysis revealed azoospermia. Menotropin (Menopur®:150 IU, three times weekly) and human chorionic gonadotrophin (1500 IU, twice weekly) were used. After 20 months of treatment, as azoospermia persisted, bilateral multiple site testicular biopsies were performed. Histology revealed severe hypospermatogenesis. Rare spermatozoa were extracted from the right posterior fragment and ICSI was performed. Four embryos were obtained and, after a frozen–thawed single-embryo transfer, the patient's wife became pregnant and gave birth to a healthy boy. We report the first case of paternity after TESE–ICSI in a patient with DAX1 mutation, giving potential hope to these patients to father non-affected children. Furthermore, this case illustrates the fact that patients with X-linked AHC have a primary testicular defect in addition to HH

    Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies

    Get PDF
    SOX8 is an HMG-box transcription factor closely related to SRY and SOX9. Deletion of the gene encoding Sox8 in mice causes reproductive dysfunction but the role of SOX8 in humans is unknown. Here, we show that SOX8 is expressed in the somatic cells of the early developing gonad in the human and influences human sex-determination. We identified two individuals with 46,XY disorders/differences in sex development (DSD) and chromosomal rearrangements encompassing the SOX8 locus and a third individual with 46,XY DSD and a missense mutation in the HMG-box of SOX8. In-vitro functional assays indicate that this mutation alters the biological activity of the protein. As an emerging body of evidence suggests that DSDs and infertility can have common etiologies, we also analyzed SOX8 in a cohort of infertile men (n = 274) and two independent cohorts of women with primary ovarian insufficiency (POI; n = 153 and n = 104). SOX8 mutations were found at increased frequency in oligozoospermic men (3.5%; p<0.05) and POI (5.06%; p=4.5x10-5) as compared to fertile/normospermic control populations (0.74%). The mutant proteins identified altered SOX8 biological activity as compared to the wild-type protein. These data demonstrate that SOX8 plays an important role in human reproduction and SOX8 mutations contribute to a spectrum of phenotypes including 46,XY DSD, male infertility and 46,XX POI

    Pathogenic variants in the DEAH-box RNA helicase DHX37 are a frequent cause of 46,XY gonadal dysgenesis and 46,XY testicular regression syndrome

    Get PDF
    PURPOSE: XY individuals with disorders/differences of sex development (DSD) are characterized by reduced androgenization caused, in some children, by gonadal dysgenesis or testis regression during fetal development. The genetic etiology for most patients with 46,XY gonadal dysgenesis and for all patients with testicular regression syndrome (TRS) is unknown. METHODS: We performed exome and/or Sanger sequencing in 145 individuals with 46,XY DSD of unknown etiology including gonadal dysgenesis and TRS. RESULTS: Thirteen children carried heterozygous missense pathogenic variants involving the RNA helicase DHX37, which is essential for ribosome biogenesis. Enrichment of rare/novel DHX37 missense variants in 46,XY DSD is highly significant compared with controls (P value = 5.8 × 10-10). Five variants are de novo (P value = 1.5 × 10-5). Twelve variants are clustered in two highly conserved functional domains and were specifically associated with gonadal dysgenesis and TRS. Consistent with a role in early testis development, DHX37 is expressed specifically in somatic cells of the developing human and mouse testis. CONCLUSION: DHX37 pathogenic variants are a new cause of an autosomal dominant form of 46,XY DSD, including gonadal dysgenesis and TRS, showing that these conditions are part of a clinical spectrum. This raises the possibility that some forms of DSD may be a ribosomopathy

    Role of complex asparagine-linked oligosaccharides in the expression of a functional thyrotropin receptor.

    No full text
    To evaluate the functional role of complex asparagine-linked oligosaccharides of the human thyrotropin receptor (TSHR), a Chinese hamster ovary cell line (JP09) and a K562 cell line (K562-TSHR) expressing this receptor were treated with deoxymannojirimycin (dMM), a mannosidase I inhibitor. dMM blocks the formation of complex-type structures and leads to the formation of high-mannose-type structures. Treatment of cells with dMM led to a decrease in the number of thyrotropin (TSH)-binding sites at the cell surface. Detection of the TSHR at the cell surface using a monoclonal antibody directed against the A subunit showed that this decrease was not due to a decrease in the number of TSHRs expressed at the cell surface. However the recognition of TSHR by a monoclonal antibody directed against the C peptide was greatly decreased. On immunoblotting, after deglycosylation using peptide N-glycanase F, the A subunit was visualized as a doublet (36 and 41 kDa). In control cells the species of higher molecular mass was more abundant whereas after dMM treatment the species of lower molecular mass became more abundant. This difference in molecular mass between the two peptides is compatible with the removal of the C peptide. In conclusion, the results show that inhibition of complex-type structure formation leads to (i) an incapacity for TSHR to bind TSH, without affecting its intracellular transport and (ii) an increase of TSHR susceptibility to proteases that remove the C peptide. We then hypothesized that removal of the C peptide could contribute to the formation of a non-functional TSHR.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore