1,002 research outputs found

    Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

    Full text link
    Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.Comment: 9 pages, 4 ps figure

    Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness

    Get PDF
    Local support is important for the longevity of conservation initiatives. The literature suggests that perceptions of ecological effectiveness, social impacts, and good governance will influence levels of local support for conservation. This paper examines these relationships using data from a survey of small-scale fishermen in 11 marine protected areas from six countries in the Mediterranean Sea. The survey queried small-scale fishermen regarding perceptions and support for conservation. We constructed composite scores for three categories of perceptions-ecological effectiveness, social impacts, and good governance-and tested the relationship with levels of support using ordinal regression models. While all three factors were positively correlated with support for conservation, perceptions of good governance and social impacts were stronger predictors of increasing support. These findings suggest that employing good governance processes and managing social impacts may be more important than ecological effectiveness for maintaining local support for conservation

    Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Get PDF
    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm−3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm−3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved

    Calibration of the response function of CsI(Tl) scintillators to intermediate-energy heavy ions

    Get PDF
    Abstract The response function of 2-cm-thick CsI(Tl) scintillators with photodiode readouts were studied by directly exposing the detectors to beams of heavy ions (2≀Z≀36) with energy up to 25 MeV/u. The dependence of the light output on the energy (E) as well as on the atomic number and the mass of the ion is analyzed and discussed, and a parameterization of the light output as a function of Z and E is proposed

    Major loss of coralline algal diversity in response to ocean acidification

    Get PDF
    Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity

    Statistical evolution of isotope composition of nuclear fragments

    Get PDF
    Calculations within the statistical multifragmentation model show that the neutron content of intermediate mass fragments can increase in the region of liquid-gas phase transition in finite nuclei. The model predicts also inhomogeneous distributions of fragments and their isospin in the freeze-out volume caused by an angular momentum and external long-range Coulomb field. These effects can take place in peripheral nucleus-nucleus collisions at intermediate energies and lead to neutron-rich isotopes produced in the midrapidity kinematic region.Comment: 14 pages with 4 figures. GSI preprint, Darmstadt, 200

    Renal prostacyclin influences renal function in non-azotemic cirrhotic patients treated with furosemide

    Get PDF
    The influence of prostaglandins on renal function changes induced by furosemide was analyzed in 21 non-azotemic cirrhotic patients with ascites. Patients were studied in two periods of 120 min immediately before and after furosemide infusion (20 mg, ev). Furosemide caused an increase in creatinine clearance in 15 patients (group A: 99 +/- 7 vs. 129 +/- 5 ml/min; mean +/- S.E.) and a reduction in the remaining six (group B: 102 +/- 13 vs. 71 +/- 9 ml/min). Parallel changes were observed in the urinary excretion of 6-Keto-prostaglandin-F1 alpha (metabolite of renal prostacyclin) which augmented after furosemide in 14 of the 15 patients from group A (478 +/- 107 vs. 1034 +/- 159 pg/min, p less than 0.001) and decreased in all patients from group B (1032 +/- 240 vs. 548 +/- 136 pg/min, p less than 0.05). In contrast, the urinary excretion of prostaglandin E2 was stimulated by furosemide in all patients (group A, 92 +/- 19 vs. 448 +/- 60 pg/min, p less than 0.001; and group B, 209 +/- 63 vs. 361 +/- 25 pg/min, p less than 0.05). In all of the patients furosemide-induced changes (post- minus pre-furosemide values) in creatinine clearance were closely correlated in a direct and linear fashion with those in 6-Keto-prostaglandin-F1 alpha (r = 0.74; p less than 0.001). These changes were associated with a higher furosemide-induced natriuresis in group A than in group B (641 +/- 68 vs. 302 +/-- 46 mumol/min, p less than 0.001

    The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations

    Get PDF
    Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314
    • 

    corecore