1,389 research outputs found
Low pT Hadronic Physics with CMS
The pixel detector of CMS can be used to reconstruct very low pT charged
particles down to about 0.1 GeV/c. This can be achieved with high efficiency,
good resolution and a negligible fake rate for elementary collisions. In the
case of central PbPb collisions the fake rate can be kept low for pT > 0.4
GeV/c. In addition, the detector can be employed for identification of neutral
hadrons (V0s) and converted photons.Comment: 6 pages. Presented at the Poster Session of Quark Matter 2006
Conference, Shanghai, 14-20 November 2006. Submitted to IJMP
High energy solar neutrinos and p-wave contributions to ^3He(p,\nue^+)^4He
High energy solar neutrinos can come from the hep reaction ^3He(p,\nue^+)^4He
with a large end point energy of 18.8 MeV. Understanding the hep reaction may
be important for interpreting solar neutrino spectra. We calculate the
contribution of the axial charge transition to the hep
thermonuclear S factor using a one-body reaction model involving a nucleon
moving in optical potentials. Our result is comparable to or larger than
previous calculations of the s-wave Gamow Teller contribution. This indicates
that the hep reaction may have p-wave strength leading to an enhancement of the
S factor.Comment: 4 pages, 1 ps figure, very minor changes, Phys. Rev. C in pres
COMPARISON OF TRANSVERSE SINGLE BUNCH INSTABILITIES BETWEEN THE ESRF AND ELETTRA
Abstract Transverse single bunch instabilities are measured, analysed and compared between the ESRF and ELETTRA, to obtain a deeper insight, namely how different effects influence coherent transverse motions. Despite the basic similarity of the two machines, being both examples of third generation light sources, it is found that some distinct differences in the relevant parameters such as the energy and optics, as well as the impedance, lead to the appearance of instabilities in a notably different manner. As well as summarising the results of the experiments, modelling of the broadband impedance of the two machines and comparison with expectations are presented
Single-inclusive production of large-pT charged particles in hadronic collisions at TeV energies and perturbative QCD predictions
The single inclusive spectrum of charged particles with transverse momenta
pT=3-150 GeV/c measured at midrapidity by the CDF experiment in
proton-antiproton (p-pbar) collisions at sqrt(s)=1.96 TeV is compared to
next-to-leading order (NLO) perturbative QCD calculations using the most recent
parametrizations of the parton distributions and parton-to-hadron fragmentation
functions. Above pT~20 GeV/c, there is a very sizeable disagreement of the
Tevatron data compared to the NLO predictions and to xT-scaling expectations,
suggesting a problem in the experimental data. We also present the predictions
for the pT-differential charged hadron spectra and the associated theoretical
uncertainties for proton-proton (p-p) collisions at LHC energies
(sqrt(s)=0.9-14 TeV). Two procedures to estimate the charged hadron spectra at
LHC heavy-ion collision energies (sqrt(s)=2.76,5.5 TeV) from p-p measurements
are suggested.Comment: 23 pages, 9 figures. A few text additions. Accepted for publication
in JHE
Infiltration from surface and buried point sources: The average wetting water content
The assumption in analytical solutions for flow from surface and buried point sources of an average water content, (θ) over bar, behind the wetting front is examined. Some recent work has shown that this assumption fitted some field data well. Here we calculated (θ) over bar using a steady state solution based on the work by Raats [1971] and an exponential dependence of the diffusivity upon the water content. This is compared with a constant value of (θ) over bar calculated from an assumption of a hydraulic conductivity at the wetting front of 1 mm day(-1) and the water content at saturation. This comparison was made for a wide range of soils. The constant (θ) over bar generally underestimated (θ) over bar at small wetted radii and overestimated (θ) over bar at large radii. The crossover point between under and overestimation changed with both soil properties and flow rate. The largest variance occurred for coarser texture soils at low-flow rates. At high-flow rates in finer-textured soils the use of a constant (θ) over bar results in underestimation of the time for the wetting front to reach a particular radius. The value of (θ) over bar is related to the time at which the wetting front reaches a given radius. In coarse-textured soils the use of a constant value of (θ) over bar can result in an error of the time when the wetting front reaches a particular radius, as large as 80% at low-flow rates and large radii
Recombinant pediocin in Lactococcus lactis:increased production by propeptide fusion and improved potency by co-production with PedC
We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA-1. On the other hand, the putative thiol-disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme-linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N-terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.</p
Solar Neutrinos: What We Have Learned
The four operating solar neutrino experiments confirm the hypothesis that the
energy source for solar luminosity is hydrogen fusion. However, the measured
rate for each of the four solar neutrino experiments differs significantly (by
factors of 2.0 to 3.5) from the corresponding theoretical prediction that is
based upon the standard solar model and the simplest version of the standard
electroweak theory. If standard electroweak theory is correct, the energy
spectrum for \b8 neutrinos created in the solar interior must be the same (to
one part in ) as the known laboratory \b8 neutrino energy spectrum.
Direct comparison of the chlorine and the Kamiokande experiments, both
sensitive to \b8 neutrinos, suggests that the discrepancy between theory and
observations depends upon neutrino energy, in conflict with standard
expectations. Monte Carlo studies with 1000 implementations of the standard
solar model confirm that the chlorine and the Kamiokande experiments cannot be
reconciled unless new weak interaction physics changes the shape of the \b8
neutrino energy spectrum. The results of the two gallium solar neutrino
experiments strengthen the conclusion that new physics is required and help
determine a relatively small allowed region for the MSW neutrino parameters.Comment: LaTeX file, 19 pages. For hardcopy with figures contact
[email protected]. Institute for Advanced Study number AST 93/6
Bulk matter physics and its future at the Large Hadron Collider
Measurements at low transverse momentum will be performed at the LHC for
studying particle production mechanisms in and heavy-ion collisions. Some
of the experimental capabilities for bulk matter physics are presented,
focusing on tracking elements and particle identification. In order to
anticipate the study of baryon production for both colliding systems at
multi-TeV energies, measurements for identified species and recent model
extrapolations are discussed. Several mechanisms are expected to compete for
hadro-production in the low momentum region. For this reason, experimental
observables that could be used for investigating multi-parton interactions and
help understanding the "underlying event" content in the first collisions
at the LHC are also mentioned.Comment: 6 pages, 7 figures. To appear in the proceedings of Hot Quarks 2008,
Estes Park, Colorado, 18-23 August 200
- …