1,193 research outputs found

    Content vs. context for multimedia semantics: the case of SenseCam image structuring

    Get PDF
    Much of the current work on determining multimedia semantics from multimedia artifacts is based around using either context, or using content. When leveraged thoroughly these can independently provide content description which is used in building content-based applications. However, there are few cases where multimedia semantics are determined based on an integrated analysis of content and context. In this keynote talk we present one such example system in which we use an integrated combination of the two to automatically structure large collections of images taken by a SenseCam, a device from Microsoft Research which passively records a person’s daily activities. This paper describes the post-processing we perform on SenseCam images in order to present a structured, organised visualisation of the highlights of each of the wearer’s days

    Visual discomfort from flash afterimages of riloid patterns

    Get PDF
    Op-art-based stimuli have been shown to be uncomfortable, possibly due to a combination of fixational eye movements (microsaccades) and excessive cortical responses. Efforts have been made to measure illusory phenomena arising from these stimuli in the absence of microsaccades, but there has been no attempt thus far to decouple the effects of the cortical response from the effect of fixational eye movements. This study uses flash afterimages to stablise the image on the retina and thus reduce the systematic effect of eye movements, in order to investigate the role of the brain in discomfort from op-art-based stimuli. There was a relationship between spatial frequency and the magnitude of the P300 response, showing a similar pattern to that of discomfort judgements, which suggests there might be a role of discomfort and excessive neural responses independently from the effects of microsaccades

    Axion minivoids and implications for direct detection

    Get PDF
    In the scenario in which QCD axion dark matter is produced after inflation, the Universe is populated by large inhomogeneities on very small scales. Eventually, these fluctuations will collapse gravitationally to form dense axion miniclusters that trap up to ∌75% of the dark matter within asteroid-mass clumps. Axion miniclusters are physically tiny however, so haloscope experiments searching for axions directly on Earth are much more likely to be probing “minivoids”—the space in between miniclusters. This scenario seems like it ought to spell doom for haloscopes, but while these minivoids might be underdense, they are not totally devoid of axions. Using Schrödinger-Poisson and N-body simulations to evolve from realistic initial field configurations, we quantify the extent to which the local ambient dark matter density is suppressed in the postinflationary scenario. We find that a typical experimental measurement will sample an axion density that is only around 10% of the expected galactic dark matter density. Our results are taken as conservative estimates and have implications for experimental campaigns lasting longer than a few years, as well as broadband haloscopes that have sensitivity to transient signatures. We show that for a OĂ°(year)-long integration times, the measured dark matter density should be expected to vary by 20%–30%

    Stellar kinematics from the symmetron fifth force in the Milky Way disk

    Get PDF
    It has been shown that the presence of nonminimally coupled scalar fields giving rise to a fifth force can noticeably alter dynamics on galactic scales. Such a fifth force must be screened in the Solar System but if unscreened it can have similar observational effects as a component of nonbaryonic matter. We consider this possibility in the context of the vertical motions of local stars in the Milky Way disk by reframing a methodology used to measure the local density of dark matter. By attempting to measure the properties of the symmetron field required to support vertical velocities we can test it as a theory of modified gravity and understand the behavior of screened scalar fields in galaxies. In particular, this relatively simple setup allows the symmetron field profile to be solved for model parameters where the equation of motion becomes highly nonlinear and difficult to solve in other contexts. We update the existing Solar System constraints for this scenario and find a region of parameter space not already excluded that can explain the vertical motions of local stars out to heights of 1 kpc. At larger heights the force due to the symmetron field profile exhibits a characteristic turn over which would allow the model to be distinguished from a dark matter halo

    Axion astronomy with microwave cavity experiments

    Get PDF
    Terrestrial searches for the conversion of dark matter axions or axion-like particles into photons inside magnetic fields are sensitive to the phase space structure of the local Milky Way halo. We simulate signals in a hypothetical future experiment based on the Axion Dark Matter eXperiment (ADMX) that could be performed once the axion has been detected and a frequency range contain- ing the axion mass has been identified. We develop a statistical analysis to extract astrophysical parameters, such as the halo velocity dispersion and laboratory velocity, from such data and find that with only a few days integration time a level of precision can be reached matching that of astro- nomical observations. For longer experiments lasting up to a year in duration we find that exploiting the modulation of the power spectrum in time allows accurate measurements of the Solar peculiar velocity with an accuracy that would improve upon astronomical observations. We also simulate signals based on results from N-body simulations and find that finer substructure in the form of tidal streams would show up prominently in future data, even if only a subdominant contribution to the local dark matter distribution. In these cases it would be possible to reconstruct all the properties of a dark matter stream using the time and frequency dependence of the signal. Finally we consider the detection prospects for a network of streams from tidally disrupted axion miniclusters. These features appear much more prominently in the resolved spectrum than suggested by calculations based on a scan over a range of resonant frequencies, making the detection of axion minicluster streams more viable than previously thought. These results confirm that haloscope experiments in a post-discovery era are able to perform “axion astronomy”

    Visual discomfort from flash afterimages of riloid patterns

    Get PDF
    Op-art-based stimuli have been shown to be uncomfortable, possibly due to a combination of fixational eye movements (microsaccades) and excessive cortical responses. Efforts have been made to measure illusory phenomena arising from these stimuli in the absence of microsaccades, but there has been no attempt thus far to decouple the effects of the cortical response from the effect of fixational eye movements. This study uses flash afterimages to stabilise the image on the retina and thus reduce the systematic effect of eye movements, in order to investigate the role of the brain in discomfort from op-art-based stimuli. There was a relationship between spatial frequency and the magnitude of the P300 response, showing a similar pattern to that of discomfort judgements, which suggests that there might be a role of discomfort and excessive neural responses independently from the effects of microsaccades

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers

    Get PDF
    The hypothesis was examined that sources of variation in macrophyte species richness (alpha-diversity: S) and community composition (“species-set”), attributable to spatial and environmental, variables, may differ in importance between tropical and temperate calcareous rivers (>10 mg CaCO3 L−1). To test this hypothesis geographic, environmental, and aquatic vegetation data was acquired for 1151 sites on calcareous rivers within the British Isles, supporting 106 macrophyte species (mean S: 3.1 species per sample), and 203 sites from Zambian calcareous rivers, supporting 255 macrophyte species (mean S: 8.3 species per sample). The data were analysed using an eigenfunction spatial analysis procedure, Moran’s Eigenvector Maps (MEM), to assess spatial variation of species richness and community composition at large regional scale (>105 km2: British Isles and Zambia); and at medium catchment scale (104–105 km2: British Isles only). Variation-partitioning was undertaken using multiple regression for species richness data, and partial redundancy analysis (pRDA) for community data. For the British Isles, spatial and environmental variables both significantly contributed to explaining variation in both species richness and community composition. In addition, a substantial amount of the variation in community composition, for the British Isles as a whole and for some RBUs, was accounted for by spatially-structured environmental variables. In Zambia, species richness was explained only by pure spatial variables, but environmental and spatially-structured environmental variables also explained a significant part of the variation for community composition. At medium-scale, in the British Isles, species richness was explained by spatial variables, and only for four of the six RBUs

    The impact of training non-physician clinicians in Malawi on maternal and perinatal mortality : a cluster randomised controlled evaluation of the enhancing training and appropriate technologies for mothers and babies in Africa (ETATMBA) project

    Get PDF
    Background: Maternal mortality in much of sub-Saharan Africa is very high whereas there has been a steady decline in over the past 60 years in Europe. Perinatal mortality is 12 times higher than maternal mortality accounting for about 7 million neonatal deaths; many of these in sub-Saharan countries. Many of these deaths are preventable. Countries, like Malawi, do not have the resources nor highly trained medical specialists using complex technologies within their healthcare system. Much of the burden falls on healthcare staff other than doctors including non-physician clinicians (NPCs) such as clinical officers, midwives and community health-workers. The aim of this trial is to evaluate a project which is training NPCs as advanced leaders by providing them with skills and knowledge in advanced neonatal and obstetric care. Training that will hopefully be cascaded to their colleagues (other NPCs, midwives, nurses). Methods/design: This is a cluster randomised controlled trial with the unit of randomisation being the 14 districts of central and northern Malawi (one large district was divided into two giving an overall total of 15). Eight districts will be randomly allocated the intervention. Within these eight districts 50 NPCs will be selected and will be enrolled on the training programme (the intervention). Primary outcome will be maternal and perinatal (defined as until discharge from health facility) mortality. Data will be harvested from all facilities in both intervention and control districts for the lifetime of the project (3–4 years) and comparisons made. In addition a process evaluation using both quantitative and qualitative (e.g. interviews) will be undertaken to evaluate the intervention implementation. Discussion: Education and training of NPCs is a key to improving healthcare for mothers and babies in countries like Malawi. Some of the challenges faced are discussed as are the potential limitations. It is hoped that the findings from this trial will lead to a sustainable improvement in healthcare and workforce development and training. Trial registration: ISRCTN6329415

    Bandgaps in the propagation and scattering of surface water waves over cylindrical steps

    Full text link
    Here we investigate the propagation and scattering of surface water waves by arrays of bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The wave transmission through the arrays is computed using the multiple scattering method based upon a recently derived formulation. For the periodic case, the results are compared to the band structure calculation. We demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the randomization of the location of the steps can significantly reduce the transmission of water waves. Comparison with other systems is also discussed.Comment: 4 pages, 3 figure
    • 

    corecore