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In the scenario in which QCD axion dark matter is produced after inflation, the Universe is populated by
large inhomogeneities on very small scales. Eventually, these fluctuations will collapse gravitationally to
form dense axion miniclusters that trap up to ∼75% of the dark matter within asteroid-mass clumps. Axion
miniclusters are physically tiny however, so haloscope experiments searching for axions directly on Earth
are much more likely to be probing “minivoids”—the space in between miniclusters. This scenario seems
like it ought to spell doom for haloscopes, but while these minivoids might be underdense, they are not
totally devoid of axions. Using Schrödinger-Poisson and N-body simulations to evolve from realistic initial
field configurations, we quantify the extent to which the local ambient dark matter density is suppressed in
the postinflationary scenario. We find that a typical experimental measurement will sample an axion
density that is only around 10% of the expected galactic dark matter density. Our results are taken as
conservative estimates and have implications for experimental campaigns lasting longer than a few years,
as well as broadband haloscopes that have sensitivity to transient signatures. We show that for a OðyearÞ-
long integration times, the measured dark matter density should be expected to vary by 20%–30%.
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I. INTRODUCTION

Axions have rapidly been accumulating interest in both
the theoretical [1,2] and experimental [3–5] particle physics
communities recently. A particularly well-motivated subset
of axion models is the quantum chromodynamics (QCD)
axion of Peccei and Quinn [6,7], which solves the puzzle of
the missing neutron electric dipole moment [6–14]. Simple
arguments show that the QCD axion is also a rather
minimal explanation for the abundance of dark matter in
the Universe [15–18]. As a result, a flourishing campaign
of new experiments now seeks to test whether these
particles really are what constitute the invisible halos that
envelop galaxies like our own Milky Way.
Much of the recent interest in the QCD axion is driven by

the upcoming generation of terrestrial direct detection

experiments known as “haloscopes” [19] which aim to
explore the large swathes of open parameter space in the
coming decades [5]. A diverse array of experimental tech-
niques have been proposed, covering multiple interaction
channels of the axion with the Standard Model, including
the axion’s defining coupling to the gluon [20–23], as well
as model-dependent couplings to photons [24–39], and
fermions [40–47].
The primary challenge in axion direct detection is both

one of breadth—the available mass range spans potentially
ma ∈ ½∼10−11;Oð1Þ� eV [48–50]—but also depth in that
the couplings to Standard Model particles may be vanish-
ingly small if the axion was produced at a very high energy
scale. Therefore, the field requires both resonance-based
experiments that can search deeply while accessing tiny
couplings, but also broadband-sensitive experiments that
can search with lower sensitivity over wider mass windows.
Since the parameter space is still wide open, it is useful to

think about possible theoretical biases we might have
toward one axion model over another. In this regard, a
target that is certainly worthy of investigation is the
10−5–10−3 eV axion mass window predicted under the
so-called “postinflationary” scenario. This is the scenario in
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which the Peccei-Quinn (PQ) symmetry—of which the
axion is the associated Goldstone boson—is broken after
the end of inflation. The resulting dark matter abundance
turns out to be tied precisely to the energy scale of PQ
breaking, and thus to the axion mass. Because the sym-
metry breaking occurs after inflation, large field gradients
and topological defects emerge in our Universe. These
highly nonlinear features are generally not amenable to any
analytical treatment, so dedicated cosmological field sim-
ulations are required to establish the precise relationship
between the axion model parameters and the resulting dark
matter abundance. To this end, the first simulation-backed
predictions of the QCD axion abundance and mass have
been made in recent years [51–59], although many unre-
solved theoretical issues remain.
Independently of the precise value of the axion mass, one

generic consequence of the postinflationary scenario that has
been known for some time is the production of dark matter
substructures in a galactic halo [60–67]. The large-amplitude
yet ultrasmall-scale density perturbations left over by the
axion field dynamics around the QCD era lead to the
formation of gravitationally bound axion clumps already
during radiation-domination. Previous studies have shown
that around 75% of all axions become bound into these
so-called “miniclusters” [68], which have masses similar to
thoseof asteroids, i.e.,M ∈ ½10−13; 10−9�M⊙, and radii of the
order of an astronomical unit (AU ∼ 5 μpc). In contrast with
the average dark matter density in the solar neighborhood
(ρDM ∼ 0.01M⊙ pc−3 ≈ 0.4 GeV cm−3) inferred from stel-
lar dynamics on scales ≳100 pc [69–71], these miniclusters
are orders of magnitude denser than the average expectation.

But this statement also implies that the vast majority of the
space outside of miniclusters must be relatively empty.
Importantly, axion miniclusters remain stable during the

formation of the first galaxy-sized halos and are only tidally
disruptedmuch later by close encounters with comparatively
pointlike objects like stars [72–76]. Thus, as a firm prediction
of the postinflationary axion dark matter scenario, the late-
time consequences of axion miniclusters cannot be ignored
in the context of direct or indirect searches.
The existence of significant axion dark matter substruc-

tures in galaxy-sized halos has both positive and negative
implications for efforts toward its detection. On the one
hand, the presence of small bound clumps potentially opens
up new opportunities for indirect detection, such as the
search for transient radio signals from axion miniclusters
colliding with the intense magnetospheres of neutron stars
[77,78]. Another proposed indirect detection technique is
gravitational microlensing [62,79,80], although axion min-
iclusters might be too diffuse to generate a detectable signal
[81].1 On the other hand, the chances of a direct detection
of axion dark matter are significantly reduced if most of
the axions are bound in miniclusters. A simple back-of-the-
envelope calculation of the encounter rate of an experiment
in a galaxy full of miniclusters suggests that we could
only expect to be lucky enough to pass through one such
substructure once every 100,000 years [3].

z = 3300 z = 999

10 mpc

FIG. 1. Volume rendering of the axion energy density at redshifts z ¼ 3300 (left) and z ¼ 999 (right) obtained from the N-body
simulation in a L ¼ 8L1 ¼ 0.2 pc box. The color scale denotes the logarithm of the overdensity field in a 5123 grid built from particle
positions in the simulation. A closeup of a particular minicluster halo indicates the physical scale relevant to the problem considered
here. For reference, the Solar System moves a distance of about 0.2 mpc in one year.

1This result had been obtained for a subset of miniclusters that
can be well described by a Navarro-Frenk-White profile [82]. For
the majority of simulated miniclusters, however, the characteristic
scale radius could not be resolved, and simulations of higher
spatial resolution are required for a more in-depth analysis.
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While the later tidal disruption of miniclusters may
slightly refill the space inside the galaxy with axions and
facilitate their detection [83,84], we cannot eliminate the
possibility that our experiments sit in a “minivoid”well away
from centers of the bound axion clumps. In such aworst-case
scenario, it is quite possible that there are simply not enough
axions in the space we occupy for terrestrial haloscope
searches towork as intended.Our aim in this work, therefore,
is to quantify how bad it can get: how much of the space in a
galaxy has a deficit of axion dark matter and how big this
deficit is. To do so, we shall perform simulations of the axion
minicluster formation and evolution.We begin from realistic
initial conditions left over from the PQ and QCD phase
transitions that account for the decay of topological defects,
and the formation and collapse of temporary solitonlike field
configurations called axitons [53,55] that lay down the
fluctuations from which the miniclusters form. Our simu-
lations then follow the gravitational dynamics of the density
fields across matter-radiation equality.
The formation and evolution of axion miniclusters have

previously been studied using semianalytic techniques such
as the Press-Schechter [66,67,80] and the Peak-Patch
[81,85] formalisms, as well as in full numerical N-body
simulations [68,75,86]. Our work extends upon and com-
plements the N-body studies of [68,75,86], and uses a
mixture of Schrödinger-Poisson and N-body methods to
simulate the formation, growth, and merger of halos made
of miniclusters. We furthermore quantify our results not
only in terms of the properties of the axion miniclusters, but
also the statistics of the axions that are not gravitationally
bound in substructures. A visualization of the axion density
field produced in our simulations at two times during the
evolution is shown in Fig. 1.
The rest of the article is organized chronologically in

cosmic time. We begin in Sec. II with a description of the
results of the early universe lattice simulations that provide us
with the requisite initial conditions.We switch to simulations
of the axion’s gravitational dynamics in Sec. III and study the
properties of the resulting axion minivoids in Sec. IV. We
discuss the consequences of these results for haloscopes in
Sec. V and, finally, conclude in Sec. VI.

II. EARLY UNIVERSE SIMULATIONS

A. Minicluster seeds

The initial conditions are of critical importance when
studying the later formation ofminiclusters, and generating a
suitable initial configuration for the field requires simulating
nonlinear dynamics of the axion well before gravitational
effects become relevant. In the postinflationary scenario, the
dynamics of the axion field goes through several distinct eras
during which important and nontrivial field configurations
emerge. First, global axion strings form as a result of
the Uð1ÞPQ spontaneous symmetry breaking at very large
temperatures T ≳ 1010 GeV. Axion strings then enter a

scaling regime and survive until around the QCD phase
transition when the axion mass becomes comparable to
the Hubble parameter, HðtÞ. At this point, the axion field
begins damped oscillations around the minimum of its
potential and domain walls form between strings. We call
the redshift or timewhen this happens the characteristic time,
t1 or z1, and can be thought of as ameasure ofwhen in cosmic
evolution the axion becomes dark matter in earnest.
The characteristic times can be calculated by satisfying

the condition maðt1Þ ¼ Hðt1Þ. This redshift turns out to be
very high, and depends weakly on the axion mass

z1 ¼ 2.5 × 1013
�
0.5 meV

ma

� 2
nþ4

: ð1Þ

The comoving size of the causal volume at t1 is, accord-
ingly, the characteristic length scale,2

L1 ¼ 0.025 pc

�
0.5 meV

ma

� 2
nþ4

; ð2Þ

where n is a parameter that controls the growth of the axion
mass with temperature, i.e., m2

a ∼ T−n. Assuming n ≃ 7

(see, e.g., [87]), we obtain L1 ∼m−0.18
a . Therefore, given

the fact that ma cannot be arbitrarily varied over many
orders of magnitude—as there is only a restrictive mass
range that give the correct dark matter abundance—the
spatial scale L1 falls between 0.02 pc and 0.05 pc, i.e., it
does not vary substantially.
After a few multiples of t1, the string-wall system

collapses under the wall tension,3 during which almost
the entirety of the energy of the system is converted into
nonrelativistic modes of the axion field. The field can then
be treated as an inhomogeneous nonrelativistic fluid.
Except for a few r ∼m−1

a localized regions which form
quasistable solitonic configurations of the axion field
known as axitons, the field is largely in the linear regime.
Axitons are expected to disappear when the axion mass
reaches its present-day value [55].
The topological defects and the subsequent axitons both

leave behind large overdensities in the energy density
distribution that act as seeds for gravitational structures
to form later in the cosmological evolution. In our recent
work [58] we performed high-resolution simulations of this
early stage as a function of the axion mass growth index, n,
and studied the resulting distribution of minicluster seeds.
We continue the evolution of this system here, when the
field values are small enough that the nonrelativistic
approximation is safe to assume.

2Note that our choice ma ¼ 0.5 meV, motivated by Ref. [81],
leads to a slightly different definition of L1 with respect to
Ref. [68].

3An unstable network is required, in order to avoid the domain
wall problem. This is satisfied in models with NDW ¼ 1 (e.g.,
KSVZ-like) or by introducing a bias term [88–98] (however see
also Ref. [99]).

AXION MINIVOIDS AND IMPLICATIONS FOR DIRECT … PHYS. REV. D 107, 083510 (2023)

083510-3



For concreteness, we focus only on the QCD axion,
adopting the value n ¼ 7. Our initial configurations are the
final snapshots of two previous simulations with 40963 and
81923 lattice sites (see Appendix A for further details), and
box side lengths of L ¼ 8L1 and L ¼ 16L1 respectively.4

B. The Schrödinger-Poisson system

In the linear regime, the dynamics of the axion field can
be described as the slow free-streaming of almost-frozen
relic waves. Gravitational effects, on the other hand, can be
accounted for in the weak-field limit, where it is convenient
to work in the Newtonian gauge defined by the line element
ds2¼−ð1þ2ΦNÞdt2þR2ðtÞð1−2ΦNÞdxidxi, where RðtÞ is
the scale factor in a Friedmann-Lemaître-Robertson-
Walker background, and ΦN ≪ 1 can be identified with
the Newtonian gravitational potential.
Given that the now nonrelativistic axion field is rapidly

oscillating with its mass ma as the leading order frequency,
we can employ a WKB approximation to write the axion
field aðxÞ as

aðxÞ ¼
�

1ffiffiffiffiffiffiffiffiffi
2ma

p ψe−imat þ H:c:

�
; ð3Þ

where ψ denotes a slowly varying complex scalar field. In
the limit ∂tψ ≪ maψ , the evolution of ψ is governed by the
Schrödinger-Poisson equations,

i∂tψ ¼ −
∇2ψ

2ma
þmaΦNψ ; ð4Þ

∇2ΦN ¼ 4πG
R

δajhψij2; ð5Þ

where δa ≡ ρa=hρai − 1 is the axion overdensity, ρa ¼
majψ j2 is the energy density, and h� � �i denotes an average
over the simulation volume.
The set of equations (4) and (5) describes any scalar field

in the classical regime, i.e., when the occupation number is
very large. Their solutions exhibit wavelike effects such as
interference patterns and the formation of soliton solutions,
as have been observed in several numerical studies
[100–109] in different cosmological scenarios. These
features are expected to show up on scales smaller than
the so-called “Jeans wavelength” [110], i.e.,

λJ ¼
2π

Rð16πGρam2
aÞ1=4

; ð6Þ

or the de Broglie wavelength λdB ¼ 2π=ðmavaÞ. For axion
masses ma ≳ 10−5 eV, λJ and λdB are comparable to, or
smaller than, the discretization scale of a typical simulation
(L ¼ 8L1 box size and ∼40003 points; see, e.g., Fig. 7 in
Appendix A). In contrast, the Schrödinger-Vlasov corre-
spondence [111] stipulates that the evolution of ρa on
scales larger than λJ cannot be distinguished from that of
collisionless pressureless matter such as standard particle
cold dark matter. Therefore, standard N-body simulations
can be used to evolve the axion field, provided that
wavelike effects appear only on scales smaller than a
simulation’s spatial resolution [68].
We solve the system of equations (4) and (5) beginning at

an initial redshift of z ¼ 5 × 1011, until the numerical
solution of the Schrödinger-Poisson system becomes unre-
liable at z ∼ 106 (discussed further in Appendix A) and the
first miniclusters start to form. From this point onwards, we
need to switch to N-body simulations in order to capture
the gravitational collapse of axion overdensities; this will
be discussed in the next section. Because in addition to
free-streaming, we include the effects of linear gravity
between the early Universe simulations and the beginning
of the N-body simulations in our modeling, this work
represents an improvement upon the numerical study of
minicluster formation of Ref. [68]. Additional details on the
numerical evaluation can be found in Appendix A.

III. N-BODY SIMULATIONS

The largest overdensities are expected to collapse and
decouple from theHubble flow to formgravitationally bound
structures at redshifts z ∼ 106. As briefly justified above,
from this point onwards we switch to N-body simulations
and continue the numerical evolution of the axion field under
gravitational interactions using the N-body code GADGET-4
[112]. We use box sizes corresponding to L=L1 ¼ 8, 16 and
compare our simulation results with those of Ref. [68] that
used a larger box size of L=L1 ¼ 24. Even though the initial
conditions of the latter have been evaluated without the
Schrödinger-Poisson evolution, we will show that our main
results on the minivoid distribution and statistics are largely
independent of the choice of initialization method. An in-
depth analysis of the choice of initial conditions and their
implications on the structure of axion miniclusters will be
discussed in a forthcoming publication. Figure 1 shows
two visualizations of the resulting density field from our
L=L1 ¼ 8 simulation.

A. Initial conditions

In order to create the initial conditions for the N-body
evolution, the axion field values on the lattice need to be
converted into particle configurations. One way to do this,

4Going in, we know that these results, and by extension the
initial structure of our miniclusters seeds, will suffer from two
main uncertainties plaguing all simulations of this type: (i) the
smallness of the simulated string tension compared to its physical
value at t ∼ t1 (see, e.g., [52,56]), and (ii) the effects of
small-scale structure to the energy density distribution left by
axitons that cannot be resolved until their disappearance by
current simulations [53]. These issues are the subject of ongoing
investigations.
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explored in Ref. [68], is to create particles of the same mass
value and vary the local number of particles placed in
the simulation according to the local density contrast.
Specifically, a number of particles equal to floorðρi=hρiÞ
are created on every grid point i and each particle is randomly
displaced by an amount drawn from a Gaussian distribution
with a standard deviation equal to a quarter of the grid
spacing. This method is particularly efficient in describing
the small-scale structure and the density profiles of the
miniclusters, at the cost of a lower resolution in the initially
underdense regions that eventually become minivoids.
To better sample the underdense regions, we explore in

this work an alternative initialization method. Here, we
place particles in the initial snapshot homogeneously, i.e.,
one particle per grid cell, but each particle can now carry
a different mass that reflects the axion density on the
grid cell. Specifically, we scale masses according to
mi ¼ δa;imav, where mav is the average particle mass. In
what follows, we refer to the first mapping method as the
“same mass ICs” and the second method as the “different
mass ICs”. As in Ref. [68], our lattice grids must be down-
sampled because of limitations on the total particle number
tractable by available computational resources; currently,
we can simulate up to 10243 particles, which shrinks the
lattice grids by a factor of 4–8 per spatial dimension when
switching to the N-body method.
We note in passing that we have also implemented

another refinement in the initialization procedure by
including initial particle velocities, which had been
neglected in Ref. [68]. To do this, we computed the
gradient of the phase of ψ , i.e., vi ¼ ∇ argψ i=ma, for
the ith particle. However, in short, we did not observe many
substantial differences between including and not including
the velocity information—at least not in the context of the
minivoid analysis we shall present shortly.

B. Final simulation time

Having implemented the initial particle realization, their
subsequent evolution under gravitational interaction as
tracked by GADGET-4 simply follows well-established
and widely used N-body techniques. The only remaining
aspect that needs to be discussed is the final time imposed
upon the simulation by the finite box size.
Because we use boxes of several different sizes, the final

simulation redshifts also vary slightly. In the L ¼ 24L1

simulation box of Ref. [68], the N-body simulation
becomes unreliable past z ¼ 99. This can be seen from
the dimensionless power spectrum Δ2ðzÞ, which becomes
Oð1Þ on the largest simulated scales k ∼ 1=L at these late
times. The simulated power spectrum on these large scales
also begins to deviate from the linearly evolved power
spectrum, given by Δ2ðk; ziÞD2ðzÞ, where

DðzÞ ¼ 1þ 3

2

1þ zeq
1þ z

ð7Þ

is the linear growth factor, zi the initial redshift, and zeq is
the redshift at matter-radiation equality. Note also that for
the smaller simulation box sizes, L=L1 ¼ 8, 16, used in this
work, the final simulation redshift must necessarily be
higher, because the largest simulated scales in these boxes
are smaller and hence become nonlinear at earlier times.
Here, we choose the final simulation redshift zf by

demanding that the ratio between the simulated power
spectrum Δ2ðzfÞ and the linearly evolved one at k≲
15 pc−1 should not exceed some threshold pthr, i.e.,

Δ2ðk; zfÞ
Δ2ðk; ziÞD2ðzfÞ

����
k≲15 pc−1

< pthr: ð8Þ

The choice of pthr ¼ 0.2 gives us the following zf values:

zf ¼ 999; L ¼ 8L1 ¼ 0.2 pc ð9Þ

zf ¼ 499; L ¼ 16L1 ¼ 0.4 pc: ð10Þ

If we were to evolve past zf, some small-scale properties
such as the shapes of the miniclusters would unlikely be
affected. However, statistical statements about the large-
scale properties of the system would not be trustworthy.
Given that we are quantifying the voids which take up the
bulk of the simulation volume, the final redshift is some-
thing we must enforce. In the following, we will refer to the
box size with its length in units of parsecs. Further details
on the N-body simulations can be found in Appendix A.

IV. MINIVOIDS

While most of the mass of dark matter is contained in
miniclusters and minihalos, these gravitationally bound
objects make up only a tiny fraction of the total volume of
the simulation. The “minivoids” that span the space
between the miniclusters are where we are mostly likely
to be. Thus, as argued in Sec. I, it is of critical importance
for direct detection that we quantify the energy density of
axions in the voids. To our knowledge, an extensive study
on void statistics for the axion postinflationary scenario has
not previously appeared in the literature.

A. Bound fraction

Before we get to the minivoids, let us briefly remark on
where the majority of axions actually find themselves.
After matter-radiation equality, the evolution of the density
field essentially consists of mergers of miniclusters, of
typical mass

M1 ≃ 2 × 10−12M⊙

�
0.5 meV

ma

� 6
nþ4

; ð11Þ

into minicluster halos with mass MMCH ≫ M1. Again, the
impact of the axion mass is only marginal (M1 ∝ m−0.54

a ),
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and the reference mass scale M1 can only vary by roughly
one order magnitude between 10−12M⊙ and 10−11M⊙.
These halos are expected to contain most of the axions in
the simulation, the extent of which can be quantified by
calculating the bound fraction fb, defined as the ratio of the
cumulative mass of gravitationally bound axions in mini-
clusters and the total mass contained in the simulation
volume.5

The left panel of Fig. 2 shows fb as a function of time as
dashed and dotted lines. For the L ¼ 0.6 pc simulation
(dashed blue line), we recover the result of Ref. [68] that the
fraction of axions bound in miniclusters reaches a value of
fb ∼ 0.75 by around z ¼ 99 and begins to plateau.
Comparing this with the bound fraction in our L ¼
0.2 pc simulations, where we distinguish between runs
using the “same mass ICs” and the “different mass ICs”
technique described in Sec III A, it is evident from Fig. 2
that the results across these different simulations are
broadly similar. In particular, at z ¼ 999 the bound fraction
is fb ∼ 0.6, with a 5% difference between the different
simulations. This reassures us of consistency between the
original “same mass ICs” initialization procedure of
Ref. [68] and the “different mass ICs” approach proposed
in this work.

B. Finding minivoids

Given that ∼25% of the axions are defined as being
outside of miniclusters, we might already expect naively
that the typical density at a given point outside of mini-
clusters in the simulation to be∼25% of the average density
over the whole simulation volume. However, this ∼25%
suppression is likely to be an overestimate, as it assumes

that the unbound axions are evenly distributed in the box,
which is certainly not the case. We therefore analyze the
structures that primarily fill the simulation volume directly
to obtain a more precise quantification of the suppression of
the average axion density.
We find void regions on the grid by first building the

density contrast field from the particle snapshots. A
Gaussian smoothing filter is then applied on the snapshot,
using a range of filter radius between Rmin ¼ 5Δx, where
Δx denotes the mean particle separation distance (or the
grid spatial unit Δx ¼ L=N), and Rmax ∼ L1. This choice of
Rmin ensures that our results are not contaminated by
discretization effects on small scales; on the other hand,
for Rmax, we do not expect voids to have comoving radii
larger than ∼1.5L1 ≃ 38 mpc. Void cells are tagged if their
average density contrast is smaller than a predetermined
threshold δthra , and minivoids are identified as spherical
regions that do not overlap with other minivoids previously
found. We test thresholds in the range δthra ∈ ½−0.4;−0.75�,
with δthra ¼ −0.7 as the fiducial value.6 We catalog the voids
by their radii, in order to study their density profiles and
statistical distributions.
As depicted in Fig. 2, we estimate the fraction fv in

volume occupied by minivoids, as well as their typical
energy density ρv, by gathering all the minivoids found in
the previous steps. One might think that both fv and ρv
depend on the choice of density threshold δthra . This is so at
the beginning of the simulation, but the dependence on our
choice of δthra clearly dies away after matter-radiation
equality and toward the end of our simulations; see
Fig. 8 in Appendix B. In addition, our estimates of fv
differ from those of Ref. [68] by less than 5% differences,
and the minivoid energy density estimates are in excellent

FIG. 2. A comparison of void statistics between the different simulations using the “different mass ICs” method of this work and the
“same mass ICs” method of Ref. [68] (see text for details). We adopt a density threshold value of δthra ¼ −0.7 to identify voids in the
simulation volume. Left: Void volume fraction fv (solids lines) and the minicluster bound fraction fb (dashed lines). Right: Average
energy density in voids, ρv, normalized to the average energy density over the whole simulation volume hρi.

5More precisely, the gravitationally bound axions correspond
to groups of at least 32 particles identified by the friend-of-friends
halo finder algorithm in the simulation.

6See, e.g., https://github.com/franciscovillaescusa/Pylians3
[113].
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(subpercent) agreement. In particular, we noticed in the
L ¼ 0.2 pc simulation that these results are completely
independent of the initialization mapping method and
whether or not particle velocities have been incorporated
in the initial conditions. We find convergence to the
following values:

ρv=hρi ≃ 0.080; fv ≃ 0.75; ðz ¼ 499Þ; ð12Þ

ρv=hρi ≃ 0.075; fv ≃ 0.81; ðz ¼ 99Þ: ð13Þ

Of the remaining ∼20% of the total volume, miniclusters
occupy only up to 1%; the rest is in the form of slightly
underdense or average-density regions (ρ ∼ hρi). More
details can be found in Appendix B.

C. Minivoid structure

Now we turn to the internal structure of voids by
computing their density profiles. The profiles are con-
structed by integrating over spherical shells around the
centre of all voids of a given size, from a minimum radius
rmin ¼ Δx to the maximum radius rmax ¼ 10Rv, where Rv
denotes the void radius. The upper panel of Fig. 3 shows the
void density profiles of all voids with comoving radii
Rv ¼ 5.5, 7, 10, and 14 mpc identified in the L ¼ 0.2 pc
simulation at redshift z ¼ 999. We find an approximately
constant profile within the void radius, and a slow decrease
at the discretization level, r≲ 3Δx. Immediately beyond

r ∼ Rv, the void density increases steeply and overshoots
the average value hρi, before dropping back down to the
average again at large radii well outside the void.
We also compare in the lower panel of Fig. 3 the density

profiles of voids with the smallest radius, Rv ¼ 5.5 mpc,
from the L ¼ 0.2 pc simulation at redshift z ¼ 999, to
those of a comparable population from the L ¼ 0.4 pc
simulation at z ¼ 499, which have Rv ¼ 11 mpc. This
close-up reveals spiked regions in the void profiles at radii
r < Rv that are even more pronounced for larger Rv. We
attribute these spikes to small miniclusters that have formed
at the earliest times but have not merged into larger
structures. Notwithstanding the highly nontrivial substruc-
ture on ∼mpc scales, the average density profiles of the
minivoids—which incorporates full particle information
from the simulation—agree with the result obtained earlier
from the void finding procedure, which uses smoothed
energy densities on the grid. This is seen by comparing the
right panel of Fig. 2 with the bottom panel of Fig. 3 at radii
r≳ 3Δx, where ρv=hρi ≃ 0.1 at z ¼ 999 and ρv=hρi ≃
0.075 at z≲ 499.
Similarly to the halo mass function for the miniclusters,

we can describe the minivoid statistics by computing the
minivoid size function, defined as the comoving number
density of minivoids per differential radius interval dn=dR.
Figure 4 shows the distribution of minivoids from the
simulation with the largest statistics, namely, the one from
Ref. [68]. We find that relatively large void regions start
to form even before matter-radiation equality, and by
z ∼ 1000 the shape of the minivoid size function does
not change anymore. Between Rv ¼ 5Δx and Rv ¼ L1, the

FIG. 3. Minivoid density profiles as a function of the normal-
ized radius. Top: profiles of minivoids of several different sizes
found in the L ¼ 0.2 pc simulations at final time z ¼ 999.
Bottom: comparison between profiles obtained from the L ¼
0.2 pc and L ¼ 0.4 pc simulations at their respective final
redshifts, zf ¼ 999 and zf ¼ 499. In both cases over 4000 voids
with Rv ¼ 14Δx have been analyzed. Shaded areas correspond to
statistical errors over the Nv voids found.

FIG. 4. Minivoid size function at various redshifts extracted
from the L ¼ 0.6 pc simulation. After matter-radiation equality,
the distribution of voids follows a R−3 power law between
comoving radii Rv ∼ 3 mpc and Rv ∼ 35 mpc.

AXION MINIVOIDS AND IMPLICATIONS FOR DIRECT … PHYS. REV. D 107, 083510 (2023)

083510-7



void size function is almost scale-invariant and can be
described by a power law,

dn
dR

¼ aR−b; ð14Þ

where the parameter values a ¼ 1.43 and b ¼ 3.11 provide
a good fit to the simulation results at z ¼ 99, as indicated
by the dashed line in Fig. 4. Note that our smaller L ¼ 0.2,
0.4 pc simulations exhibit the same void size functions and
a comparable redshift dependence, indicating that these
results are generally convergent. See Appendix B for further
details.

D. Minivoid fluctuations

Apart from the statistics of minivoids and their profiles,
the energy distribution within the simulation volume also
provides further insights. We are interested to estimate the
degree of variance in the typically observed dark matter
density, in order to guide experiments that will be meas-
uring over long timescales. However, our smallest discre-
tization scale Δx ¼ 0.4 mpc (for L ¼ 0.2 pc, N ¼ 512) is
still larger than the distance dyear ≃ 0.2 mpc traveled by the
Solar System around the Milky Way halo in one year at a
speed of v ∼ 220 km=s. This implies that, with our current
simulation resolution, we cannot resolve the density var-
iations for observation times under one to two years.
Nevertheless, we have analyzed Oð105Þ randomly selected

trajectories in the final snapshot of the L ¼ 0.2 pc simu-
lation over a distance of 11Δx ≃ 4.5 mpc. For each
trajectory, we estimate the density variation as a function
of the displacement Δr from the starting point. Figure 5
shows two measures of the density variation relevant for
different types of experiments relying on measurements
over long periods of time and on individual short-term
measurements.
The first measure of the density variation, shown in the

left panel of Fig. 5, is what we call the global density
variation, and measures how much the density contrast
varies along a trajectory, relative to the average dark matter
density over the whole simulation volume hρi,

ΔδðrÞ ¼ max ρðrÞ −min ρðrÞ
hρi : ð15Þ

As can be seen in Fig. 5, while the typical density sampled
by an experiment at any one time is about 10% of the
average, the number can in fact be expected to vary
between ∼5% and ∼15% over an Oð1Þ year timescale.
For longer times, i.e., > 10 years, the variation can grow
even more. We will refer to this result again in the next
section. A varying density could potentially challenge the
interpretation of multiple experiments attempting to
observe and then test a putative axion signal over several
short measurements at different points in time.
The second measure, shown in the right panel of Fig. 5,

is a similar quantity which we simply call the local density

FIG. 5. Two measures of the density variation along random trajectories through the simulation volume, quantified in terms of Δr, or,
equivalently, the observation time, assuming the Solar System moves around the galaxy at a speed of 246 km=s. The left panel shows the
global density variation, Δδ, defined in Eq. (15), which describes how much the density varies along a trajectory relative to the large-
scale mean density hρi. The right panel shows a related quantity which we call the local density variation, σρ, defined in Eq. (16), which
is the typical size of density fluctuations relative to the mean along that particular trajectory. In both cases, the solid white line
corresponds to the median over 105 random trajectories along 6 mpc, while the dashed lines enclose the 16th to 84th percentiles of the
distribution. The distribution itself is normalized at each grid point and indicated by the purple shading.
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variation, and quantifies how the typical size of the density
fluctuations changes relative to the average density along a
particular trajectory,

σρðrÞ ¼
1

hρðrÞitraj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nr

Xnr
i¼1

ðρðriÞ − hρðrÞitrajÞ2
s

: ð16Þ

Here, nr denotes the number of grid points making up the
trajectory r, and we use hρðrÞitraj to make clear that this is
the mean density along that trajectory. We define this
measure as a standard deviation—rather than as a range as
in Eq. (15)—because we use this in the context of single
long measurements, though this choice is arbitrary. By this
measure, the right panel of Fig. 5 shows that the measured
density can be expected to vary by 20%–30% initially for
an observing time ofOð1Þ year, and by almost 100% if the
measurement is carried out over even longer timescales.
This measure is consistent with the previous one, but the
interpretation is subtly different, in that we must imagine
here a continuous measurement of the axion field lasting
long periods of time. This variation would affect the
reconstruction of the axion’s properties by an amount that
goes roughly as the square root of the typical scale shown
by e.g. the white line in the right panel of Fig. 5. We discuss
the implications of this result further in Sec. V.

E. Minivoid survival

With current numerical methods we are not able to
extend the simulations after z ∼ 100. Indeed, it is unlikely
that any N-body-based simulation that actually resolves
individual miniclusters could ever be evolved to the present
day on their own, due to the extreme computational
demand placed on the resolution and box size. However,
we can attempt to qualitatively describe what happens at
later stages in the evolution.
To simplify the discussion, minivoids should be thought

of as simply the space not occupied by miniclusters rather
than actual entities in and of themselves, so what happens
to them is necessarily dictated by whatever happens to the
miniclusters. The only processes we can think of that can
efficiently disrupt or affect the miniclusters are the tidal
interactions with dense objects like stars. If, say, a mini-
cluster had enough energy injected in a close encounter for
the axions to become totally unbound, then the axion
minicluster would grow into a long stream, spilling its mass
into a volume given roughly by ∼R2σt, where R is the
radius of the minicluster, σ is its velocity dispersion, and t
the time since disruption. This is probably best thought of
as the formation of a distinct type of object, a stream (see,
e.g., [83,84,114]), but effectively what has happened is that
the minivoids have partially been refilled by axions. On the
other hand, one of the key observations from our study is
that the miniclusters and minivoids have stopped growing
by the end of our simulations, with the void the densities

approaching a constant value (see e.g. Fig. 2 on the right).
Our expectation, as we will argue, is therefore that the
stellar and tidal interactions, would likely only increase the
fraction of axions outside of miniclusters. An understand-
ing of how the phase space distribution becomes refilled,
and the role of the minivoids and their substructure at z ¼ 0
is beyond our current scope and is left for future works.

V. IMPLICATIONS FOR HALOSCOPES

Having quantified the extent to which the typical local
density of axions in a galactic halo is suppressed due to the
presence of minivoids, we now wish to evaluate the
implications for efforts to search for the dark-matter axion
in laboratory experiments. For illustrative purposes, we
shall focus on experiments utilizing the axion’s coupling
to the photon, gaγ, as these are the subject of the most
experimental activity. In principle, though, our results apply
to all direct searches for axions via any other coupling,
as long as the postinflationary scenario is true and the
resulting miniclusters are present in our universe—this
typically will be the case for axions in the mass range
∼10 μeV–meV.7 Hence, experiments like CASPEr-electric
[20], as well as the proposals of Refs. [21,22], which
purport QCD axion sensitivity in the same mass range via
the electric-dipole-moment coupling may also be impacted.
Essentially, all direct searches for axions are based on a

model for the local behavior of the field in terms of
coherent oscillations,

aðtÞ ≈
ffiffiffiffiffiffiffi
2ρa

p
ma

cos ðωtþ ϕÞ; ð17Þ

where ϕ is an arbitrary phase. We ignore all spatial
dependence here as it is unimportant for this discussion.
The frequency of the oscillations is given by the kinetic
energy in the field ω ≈mað1þ v2=2Þ, where v is the dark
matter speed in units of c. Since the dark matter speed is
only a correction of v ∼ 10−3 and varies with a dispersion,
σv, of approximately the same scale, this implies the field
oscillates coherently over ma=maσ

2
v ∼ 106 cycles. The

velocity will be drawn from the local velocity distribution,
however, so when the field is observed for timescales
longer than 106=ma, any resulting signal that is tied to those
oscillations will be distributed in frequency according to
the same distribution up to a change of variables—this, in
haloscope jargon, is called the lineshape.
The majority of axion experiments (and all axion experi-

ments using the photon coupling) couple linearly to the
axion field, e.g., L ∼ gaγaFF̃. This means that signals will
scale as a2g2aγ . Ignoring Oð1Þ factors specific to individual

7Axion models with domain wall number greater than 1 may
have qualitatively different distributions of miniclusters and
minivoids, which is deserving of a dedicated study.
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experiments, the generic scaling of electromagnetic signal
power on the quantities of interest is

PðωiÞ ∝ g2aγαðωiÞρafðωiÞ; ð18Þ

where fðωiÞ is the axion lineshape binned at some arbitrary
set of frequency bins ωi. The amplitude αðωiÞ is a
stochastic quantity drawn from a Rayleigh distribution
[114] that is present if the phases in Eq. (17) are randomly
drawn in every coherence time (this may not be the case in
the vicinity of miniclusters; however, the conservative
approach is to assume that it is).
From here we see that experimental sensitivity to gaγ

scales as 1=
ffiffiffiffiffi
ρa

p
, implying a factor of ∼3 suppression in

limits when comparing typical minivoid densities to the
baseline homogeneous assumption that the observable
axion density is exactly equal to the astronomically inferred
dark matter density in the solar neighborhood. Estimates of
the latter vary in the literature—in fact, there is a long
history of these types of measurements [69]—but most
recent analyses using Gaia data place the local density of
dark matter in the range ρDM ¼ ½0.2; 0.7� GeV cm−3 [71].
The most important type of measurement for our purposes
are the local techniques which aim to solve the Jeans
equation for tracer populations of stars in the solar
neighborhood. Then after subtracting the baryonic contri-
bution to the gravitational potential, one can infer the
(subdominant) contribution coming from dark matter.
These also usually give values in the same range, but
importantly rely upon stellar tracer populations that span at
least a few ∼100 pc. This is far, far above the scale probed
by experiments, which is less than a milliparsec.
The results of the previous section suggest that the

typical density sampled by an experiment at a given instant
is around 10% of the average density in the box which we
use as a proxy for the distribution of axions in a similar-
sized volume within our galaxy. The convention in the
axion community has been to adopt the value ρDM ¼
0.45 GeVcm−3 and to assume 100% of dark matter is in
the form of detectable axions in the ambient dark matter in
the solar neighborhood. In Fig. 6 we show the status of
experimental limits on gaγ in the approximate mass window
relevant to the postinflationary scenario. The standard
published limits under the dark matter density convention
mentioned above are shown in lighter-shaded colors. We
show the extent to which this sensitivity is reduced in the
worst-case scenario in which the volume in our simulation
represents the typical density inside a galaxy at z ¼ 0. A ∼
10% reduction in the typical density corresponds to the
factor of ∼3 suppression in sensitivity. Interestingly—or
perhaps worryingly—this is comparable to the ratios in
the couplings of the two common axion model bench-
marks, the KSVZ [11,12] and DFSZ [13,14] models:
KSVZ=DFSZ ∼ 1.92=0.75 ∼ 2.56. Hence, we can make
the statement that an experiment ruling out the DFSZ

model over some mass range will still have ruled out KSVZ
even when most of the axions are bound up in miniclusters.
We generally expect from the plateauing growth of the

miniclusters at the latest redshifts that the voids should not
lose much more density in axions. Because of this fact, as
well as the fact that ambient density ought to be partially
refilled by disrupted miniclusters, we may expect our
estimate of the typical density to be a conservative lower
bound. It could prove to be higher once the galaxy has
formed in full, and as the miniclusters are disrupted with
their contents virialized into the main host. However,
previous studies have shown that something around
60%–70% of miniclusters orbiting around the solar neigh-
borhood would remain intact [74,75].
This suppression in density is perhaps most impactful for

resonance-based experiments like ADMX [118], CAPP
[124], HAYSTAC [129], TASEH [137,138], GrAHal [127],
RADES [134], ORGAN [130,131] and MADMAX [29],

FIG. 6. Current constraints on the axion-photon coupling in the
μeV–meV mass window, for two different assumptions about
the ambient density of axions. In the lighter shades, we show the
standard assumption that axions make up 100% of the measured
galactic dark matter distribution in the solar neighborhood of
ρDM ¼ 0.45 GeV cm−3. The darker shade bounds our estimate of
the lowest assumption for the typical ambient density of dark
matter in the worst-case scenario that the local density of axions is
primarily inside of miniclusters, yet experiments probe the space
between miniclusters. The red haloscope bounds are taken from
Refs. [115–138], CAST from Ref. [139,140], globular cluster
stellar cooling bound from Ref. [141], a search for axions
produced in pulsar polar cap cascades [142], and the neutron
star dark matter bound from Ref. [143]. Since the last constraint
also relies on the assumption that the axions make up galactic
dark matter, we have also applied the rescaling factor as with the
haloscopes. Limit data and plots available at Ref. [144].
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that rely on only short total integration times at any one
frequency. The suppressed typical density reduces the
available signal these experiments can observe, and hence
should be taken seriously when considering how much of
the axion parameter space in the postinflationary mass
range they have really constrained.
In contrast, for experiments that do not rely on reso-

nances, and instead operate in a broadband mode over a
wide range of frequencies, our aim was to study the
possible implications for (i) individual measurements at
different times spanning a relatively long period, and
(ii) continuous measurements for a long period of time.
In the first context (left panel of Fig. 5.), the most relevant
implication of this result is for multiple different experi-
ments each testing the veracity of a putative signal at
different points in time. Naïvely, we would expect that if a
signal were real it would remain at the same strength at
every given measurement. Here, we see that measurements
can be expected to vary in strength over several-year
periods. Furthermore, to reconstruct the value of the axion’s
coupling, one has to break the degeneracy g2aγρa somehow,
usually by assuming a value of ρa. We have shown in this
work that a 10% suppression compared to the measured
local dark matter density is expected, although this sup-
pression could vary between, say, 5% and 30% on a
timescale of only a couple of years.
In the second context—i.e., the right panel of Fig. 5—we

computed not the range in density suppressions, but rather
the standard deviation in densities along many different
trajectories. As in this case, we take the density relative to
the mean density at that specific location, it is more relevant
for experiments conducting single continuous measure-
ments. This is not a relevant question for many current
haloscopes, however for upcoming broadband haloscopes,
it is. The best example is BREAD [32] which does not
attempt any resonant enhancement of the axion signal, but
rather has a broadband acceptance of photons over a wide
band of frequencies. To compensate for its lower sensitivity
at any given mass, it instead looks for signals over much
longer integration times. BREAD is additionally relevant as
in its proposed guise of “GigaBREAD” in which a coaxial
horn antenna will be used as the detector, it will have
sensitivity to axions squarely in the postinflationary mass
range. Projections published by the collaboration assume
total data-taking times ranging from 10 to 1000 days.
Taking the longer of those durations, we can inspect the
right panel of Fig. 5 to see that a signal variation of ∼30% is
expected within that time.

VI. CONCLUSIONS

In this article, we have presented the results from a set of
lattice and N-body simulations for the postinflationary
QCD axion. We performed for the first time a realistic
simulation of the axion field from the epoch of cosmic
strings before the collapse z ∼ 1016 and the time when the

field configuration collapses into halos and formsminivoids,
z ∼Oð102Þ. This was done by combining a three-stage
simulation,with latticemethods to solve the axion relativistic
field equation and the nonrelativistic Schrödinger-Poisson
system, andN-bodymethods for the collisionless darkmatter
dynamics.
We have placed a particular emphasis on the axions that

occupy minivoid regions, in the space between small
miniclusters and larger minicluster halos. As the minivoids
occupy the vast majority of the sub-pc-sized simulation
volume, the same will be true of a typical place in our
galaxy. Direct detection experiments on Earth therefore do
not sample the value of the dark matter density of
∼0.4 GeVcm−3—which is obtained through measure-
ments of stellar dynamics on scales well above this—but
rather a suppressed value, given by the typical axion
density in the voids. The quantitative answer to how great
this suppression is, is around 10% of that density. We have
tested various differences in the technical configuration of
the simulation, including the physics included in the
evolution, as well as the initial conditions, and find that
this number is relatively robust.
We also made an estimate of the variance in this density,

arguing that the density of axions along typical Oð1Þ-year-
long trajectories through the Galaxy can be expected to
vary quite considerably. While the 10% suppression rela-
tive to the global average on galactic scales does not vary
much, for experiments like broadband haloscopes making
single continuous measurements of a potential axion signal,
the density should be expected to vary by several tens of
percent.
We should finish by remarking that our results strictly

only apply at the final redshift of our simulations—
typically zf ≳ 100—which is of course well before the
present day. Extrapolating our result to z ¼ 0 is beyond the
scope of this work; however, we have tried to make
statements that are conservative in several ways.
First, it should be said that the fractions of axions in

miniclusters and invoids are both plateauingby the end of the
simulation, implying that the evolution is approaching a
somewhat steady state. Second, the next important process
for the lives of the miniclusters will be tidal disruption.
The case can be made that our estimation of the density
suppression and its variation can both be taken as a
conservative lower bound. Due to the tidal and stellar
disruption of the miniclusters, the axion dark matter dis-
tribution could be described by numerous virialized streams
of axions, leading to larger typical densities, but also larger
variations. Disruption has been studied for applications for
indirect signals, e.g., collisions between miniclusters and
neutron stars [78]. However further study is needed to
quantify how much our results might change after consid-
ering disruption in the case of direct detection. It maywell be
that sufficient disruption occurs for the haloscopes to reclaim
much of their earlier assumed sensitivity.
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APPENDIX A: DETAILS
OF NUMERICAL METHODS

In this appendix, we discuss the technical details of our
lattice and N-body simulations.

1. Lattice simulations

As in Refs. [53,58] we use the public code JAXIONS
8 to

simulate axions around the QCD phase transition. In
particular, we consider the Klein-Gordon evolution equa-
tion for the complex field ϕ,

ϕ̈þ 3H _ϕ −
∇2

R2
ϕþ λϕðjϕj2 − f2aÞ ¼ 0; ðA1Þ

which has as its solutions radial and massive saxionmodes,
angular and massless axion modes, and strings.
Equation (A1) is used to evolve ϕ from an initial redshift
of zi ∼ 1016 until the collapse of topological defects that
happens around z ∼ 1013. From there on, only the angular
degree of freedom needs to be considered, and the equation
of motion reduces to

äþ 3H _a −
∇2

R2
aþm2

aðTÞfa sin
�
a
fa

�
¼ 0; ðA2Þ

where a=fa ¼ argϕ, and maðTÞ ∝ T−n is the temperature-
dependent axion mass with power-law index n ¼ 7 [53,87].

We solve Eqs. (A1) and (A2) using a finite difference
method and the symplectic integrator RKN4 [149]. The
spatial derivatives are calculated from two neighboring
points and accurate to OðΔ4

xÞ, where Δx ¼ L=N, while the
time-step is dynamically adjusted to resolve the fastest
modes in the box [53]. To solve Eq. (A1) we implement the
so-called fat-string or Press-Ryden-Spergel (PRS) trick
[150,151] that keeps the string width constant in comoving
coordinates by rescaling the potential coupling λ → λ=R2.
A resolution of N3 ¼ 81923 grid points is required for
simulations in boxes of side length L > 8L1, in order to
avoid the unphysical destruction of the string-wall network.
For smaller simulation volumes a resolution of N3 ¼ 40963

is adopted. After a few background field oscillations, the
axion field aðxÞ enters the linear regime as the field values
become smaller. An adiabatic approximation is applied at
z ∼ 5 × 1011, well after the axitons are expected to disappear
as the axion mass reaches its zero-temperature value.
At this point, we apply the nonrelativistic approximation

and map the conformal axion field aτ, where τ denotes the
conformal time dτ ¼ dt=a, into the complex conformal
field ψ as in Eq. (3). This is done by identifying the real and
imaginary parts of ψ , i.e.,

Re½ψ � ¼
ffiffiffiffiffiffiffiffiffiffiffi
2τma

p
2

aτ; ðA3Þ

Im½ψ � ¼
ffiffiffiffiffiffiffiffiffiffiffi
2τma

p ðnþ 2ÞR0

8τmaR
aτ þ 1ffiffiffiffiffiffiffiffiffiffiffi

2τma
p ðaτÞ0: ðA4Þ

Note that, although this identification effectively means
that we double the degrees of freedom stored in the field,
the system of equations, Eqs. (4) and (5), that describes the
evolution of ψ is a first-order system. Thus, the computa-
tional cost required to solve them is the same as that needed
to solve the second-order Eq. (A2). We solve the
Schrödinger-Poisson system with a resolution of 10243

grid points and similar schemes as described above, i.e., a
sympletic time integration and finite difference for the
spatial derivatives, also implemented in JAXIONS. The
effects of gravity in the Schrödinger-Poisson system enter
via the Madelung transformation in the equation of motion
for the phase S ¼ argψ ,

S0 ¼ 1

2ma

�∇2jψ j
jψ j − ð∇SÞ2

�
−maΦN; ðA5Þ

while the equation of motion for the modulus jψ j can be
recast into the energy density continuity equation. The
phase field S will then drive the axion density toward
the minima of the potential ΦN , and itself starts to wrap the
fundamental domain ½0; 2πÞ according to the depth of the
well. Thus, the numerical evaluation will lose its accuracy
when 2π phase jumps occur near the discretization scale.8https://github.com/veintemillas/jaxions.
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In other words, there is a maximum value that can be
reached in the gradient of S (i.e., the velocity field),

ð∇SÞmax ∼
π

Δx
; ðA6Þ

which limits the evolution of the Schrödinger-Poisson
system. This maximum phase gradient can be related to
the maximum difference in the values of the gravitational
potential that can be read at each time step. The condition
(A6) is reached at redshift z� ∼ 2 × 106, after which we
continue the evolution of the system using N-body sim-
ulations, since with our choice of ma the Jeans wavelength
is not resolved anymore, λJ < Δx; see Fig. 7.

a. A note on velocities

As long as the particles are in the single-streaming
regime, we can assign a single velocity at each local point
by solving the Euler equation

∇ · vðxÞ ¼ ∇2SðxÞ
ma

; ðA7Þ

and hence

vðxÞ ¼ ∇ argðψÞ
ma

: ðA8Þ

This task can be performed using the full complex field ψ
by exploiting the relation

∇S ¼ Im

�
ψ�∇ψ

jψ j2
�

¼ ψ r∇ψ i − ψ i∇ψ r

ψ2
r þ ψ2

i
; ðA9Þ

where ψ r;i denote the real and imaginary parts, respectively.
Typical velocities in the initial conditions are the order
hvi ∼ 10−9 in natural units.

2. N-body simulations

Given the large range of time evolution, an N-body run is
costly in terms of computational resources and runtime. We
therefore limit the resolution of our simulations in this work
to 5123 dark matter particles and leave higher resolution
runs for a future publication. For the simulations with box
sizes L ¼ 8L1 and L ¼ 16L1, we use a TreePM method as
implemented in GADGET-4, with a PMgrid of 5123 points and
a numerical softening length of ls ≃ 1.95 × 10−5 pc=h ≃
4 AU=h in comoving units. This value is∼30 and∼60 times
smaller than the average particle separation in the two
simulation volumes used in this study. We modified
GADGET-4 to include the effects of radiation that dominates
the energy budget at the initial time and perform our
simulations using the following cosmological parameters:
Ωm ¼ 0.3;ΩΛ ¼ 0.7;Ωr ¼ 8.49 × 10−5, andh ¼ 0.71. The
average particle mass in our simulations is mav ¼ 1.15 ×
10−16M⊙=h and mav ¼ 4.4 × 10−17M⊙=h, respectively, in
our L ¼ 0.2 pc and L ¼ 0.4 pc simulations.

APPENDIX B: MORE ON MINIVOIDS

As described in the main text, minivoids are identified
based on a predetermined density threshold δthra on the
axion energy density built from the particle positions. We
show in this appendix that the resulting void statistics do
not depend on the specific choice of δthra .
Figure 8 shows the minivoid volume fraction fv

and energy density ρv=hρi extracted from the L ¼ 0.2 pc
simulation using a range of threshold values −δthra ¼
f0.4; 0.45; 0.5; 0.55; 0.6; 0.65; 0.7; 0.8g. Evidently, both
fv and ρv=hρi converge to the values given in Eq. (13)
for all thresholds δthra ≥ −0.7. We find deviations for the
choice of δthra ¼ −0.8, as minivoids with ∼20% energy of
the overall average value hρi occupy a sizeable fraction of
the box. This behavior is also observed in the L ¼ 0.4,
0.6 pc simulations.

FIG. 7. Axion comoving Jeans wavelength λJ as defined in
Eq. (6) as a function of redshift for different axion masses ma.
The grid resolution in our Schrödinger-Poisson simulations, Δx,
is indicated by the horizontal dashed line.

FIG. 8. Minivoid volume fractions fv (green) and typical
energy densities ρv=hρi (red) as a function of redshift. We
highlight how results at late times are independent of the
threshold parameter of the void finder; see Sec. IV B for details.
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In addition, we want to stress that, while 80% of the
volume is occupied by low-density minivoids, the remain-
ing ∼20% of the volume is occupied by regions that are
only mildly underdense—usually in the form of filaments
connecting minicluster halos—and by regions of average
density that limit the boundaries of miniclusters. We have
checked this by imposing a lower density threshold in the
void finder algorithm, i.e.,

1 ≥ ρv=hρi ≥ δthra : ðB1Þ

Figure 9 shows the resulting fv from the L ¼ 0.6 pc
simulation for several choices of δthra .
Finally, Fig. 10 shows the void size function at z ¼ 999

for various choices of minivoid density thresholds for two
different simulation volumes. Evidently, they are in good
agreement with each other. Note that the void size function
does not change substantially between z ¼ 999 and z ¼ 99
(see Fig. 4).
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