52 research outputs found

    Nuclear recoil response of liquid xenon and its impact on solar 8B neutrino and dark matter searches

    Full text link
    Knowledge of the ionization and scintillation responses of liquid xenon (LXe) to nuclear recoils is crucial for LXe-based dark matter experiments. Current calibrations carry large uncertainties in the low-energy region below 3\sim3 keVnr_nr where signals from dark matter particles of <<10 GeV/c2^2 masses are expected. The coherent elastic neutrino-nucleus scattering (CEν\nuNS) by solar 8^8B neutrinos also results in a continuum of nuclear recoil events below 3.0 keVnr_{nr} (99\% of events), which further complicates low-mass dark matter searches in LXe experiments. In this paper, we describe a method to quantify the uncertainties of low-energy LXe responses using published calibration data, followed by case studies to evaluate the impact of yield uncertainties on 8{^8}B searches and low-mass dark matter sensitivity in a typical ton-scale LXe experiment. We conclude that naively omitting yield uncertainties leads to overly optimistic limits by factor 2\sim2 for a 6 GeV/c2^2 WIMP mass. Future nuclear recoil light yield calibrations could allow experiments to recover this sensitivity and also improve the accuracy of solar 8{^8}B flux measurements

    A search for new physics in low-energy electron recoils from the first LZ exposure

    Full text link
    The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axion-like particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.Comment: 13 pages, 10 figures. See https://tinyurl.com/LZDataReleaseRun1ER for a data release related to this pape

    Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment

    Full text link
    The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2×10489.2\times10^{-48} cm2^2 for the spin-independent interaction of a 36 GeV/c2^2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was (6.3±0.5)×105(6.3\pm0.5)\times10^{-5} events/keVee_{ee}/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment.Comment: 25 pages, 15 figure

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Full text link
    The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LZ's first search for Weakly Interacting Massive Particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross-sections for WIMP masses above 9 GeV/c2^2. The most stringent limit is set at 30 GeV/c2^2, excluding cross sections above 5.9×1048\times 10^{-48} cm2^2 at the 90\% confidence level.Comment: 9 pages, 6 figures. See https://tinyurl.com/LZDataReleaseRun1 for a data release related to this pape

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br

    Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1-2) ×\times 101210^{-12} pb at a WIMP mass of 40 GeV/c2c^2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
    corecore