2,285 research outputs found

    Spectroscopic evolution of dusty starburst galaxies

    Get PDF
    By using a one-zone chemical and spectrophotometric evolution model of a disk galaxy undergoing a dusty starburst, we investigate, numerically, the optical spectroscopic properties in order to explore galaxy evolution in distant clusters. We adopt an assumption that the degree of dust extinction (represented by AVA_V) depends on the ages of starburst populations in such a way that younger stars have larger AVA_V (originally referred to as selective dust extinction by Poggianti & Wu 2000). In particular, we investigate how the time evolution of the equivalent widths of [OII]λ\lambda3727 and Hδ\delta is controlled by the adopted age dependence. This leads to three main results: (1) If a young stellar population (with the age of \sim 10610^6 yr) is more heavily obscured by dust than an old one (>> 10810^8 yr), the galaxy can show an ``e(a)'' spectrum characterized by strong Hδ\delta absorption and relatively modest [OII] emission. (2) A dusty starburst galaxy with an e(a) spectrum can evolve into a poststarburst galaxy with an a+k (or k+a) spectrum 0.2 Gyr after the starburst and then into a passive one with a k-type spectrum 1 Gyr after the starburst. This result clearly demonstrates an evolutionary link between galaxies with different spectral classes (i.e., e(b), e(a), a+k, k+a, and k). (3) A dusty starburst galaxy can show an a+k or k+a spectrum even in the dusty starburst phase if the age-dependence of dust extinction is rather weak, i.e., if young starburst populations with different ages (\le 10710^7 yr) are uniformly obscured by dust.Comment: 27 pages 12 figures,2001,ApJ,in pres

    Luminosity Functions of Elliptical Galaxies at z < 1.2

    Get PDF
    The luminosity functions of E/S0 galaxies are constructed in 3 different redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST surveys. These independent luminosity functions show the brightening in the luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of significant number evolution. This is the first direct measurement of the luminosity evolution of E/S0 galaxies, and our results support the hypothesis of a high redshift of formation (z > 1) for elliptical galaxies, together with weak evolution of the major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2 table

    GMRT Detection of HI 21 cm-line Absorption from the Peculiar Galaxy in Abell 2125

    Full text link
    Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km/s. The estimated column density of atomic Hydrogen is 0.7e22(Ts/100K) per sq. cm. The HI absorption is redshifted by ~ 400 km/s compared to the [OIII] emission line from this system. We attribute this to an in-falling cold gas, or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.Comment: 9 pages, 2 figures, uses jaa.sty (included

    Time Evolution of Galaxy Formation and Bias in Cosmological Simulations

    Full text link
    The clustering of galaxies relative to the mass distribution declines with time because: first, nonlinear peaks become less rare events; second, the densest regions stop forming new galaxies because gas there becomes too hot to cool and collapse; third, after galaxies form, they are gravitationally ``debiased'' because their velocity field is the same as the dark matter. To show these effects, we perform a hydrodynamic cosmological simulation and examine the density field of recently formed galaxies as a function of redshift. We find the bias b_* of recently formed galaxies (the ratio of the rms fluctuations of these galaxies and mass), evolves from 4.5 at z=3 to around 1 at z=0, on 8 h^{-1} Mpc comoving scales. The correlation coefficient r_* between recently formed galaxies and mass evolves from 0.9 at z=3 to 0.25 at z=0. As gas in the universe heats up and prevents star formation, star-forming galaxies become poorer tracers of the mass density field. After galaxies form, the linear continuity equation is a good approximation to the gravitational debiasing, even on nonlinear scales. The most interesting observational consequence of the simulations is that the linear regression of the star-formation density field on the galaxy density field evolves from about 0.9 at z=1 to 0.35 at z=0. These effects also provide a possible explanation for the Butcher-Oemler effect, the excess of blue galaxies in clusters at redshift z ~ 0.5. Finally, we examine cluster mass-to-light ratio estimates of Omega, finding that while Omega(z) increases with z, one's estimate Omega_est(z) decreases. (Abridged)Comment: 31 pages of text and figures; submitted to Ap

    The mass-metallicity gradient relation of early-type galaxies

    Full text link
    We present a newly observed relation between galaxy mass and radial metallicity gradients of early-type galaxies. Our sample of 51 early-type galaxies encompasses a comprehensive mass range from dwarf to brightest cluster galaxies. The metallicity gradients are measured out to one effective radius by comparing nearly all of the Lick absorption-line indices to recent models of single stellar populations. The relation shows very different behaviour at low and high masses, with a sharp transition being seen at a mass of ~ 3.5 x 10^10 M_sun (velocity dispersion of ~140 km/s, M_B ~ -19). Low-mass galaxies form a tight relation with mass, such that metallicity gradients become shallower with decreasing mass and positive at the very low-mass end. Above the mass transition point several massive galaxies have steeper gradients, but a clear downturn is visible marked by a broad scatter. The results are interpreted in comparison with competing model predictions. We find that an early star-forming collapse could have acted as the main mechanism for the formation of low-mass galaxies, with star formation efficiency increasing with galactic mass. The high-mass downturn could be a consequence of merging and the observed larger scatter a natural result of different merger properties. These results suggest that galaxies above the mass threshold of ~ 3.5 x 10^10 M_sun might have formed initially by mergers of gas-rich disc galaxies and then subsequently evolved via dry merger events. The varying efficiency of the dissipative merger-induced starburst and feedback processes have shaped the radial metallicity gradients in these high-mass systems.Comment: 5 pageg, 3 figures, accepted by ApJ Lette

    A comparison of the galaxy populations in the Coma and distant clusters: the evolution of k+a galaxies and the role of the intracluster medium

    Full text link
    The spectroscopic properties of galaxies in the Coma cluster are compared with those of galaxies in rich clusters at z0.5z \sim 0.5, to investigate the evolution of the star formation history in clusters. Luminous galaxies with MV20M_V \leq -20 and post-starburst/post-starforming (k+a) spectra which constitute a significant fraction of galaxies in distant cluster samples are absent in Coma, where spectacular cases of k+a spectra are found instead at MV>18.5M_V>-18.5 and represent a significant proportion of the cluster dwarf galaxy population. A simple inspection of their positions on the sky indicates that this type of galaxy does not show a preferential location within the cluster, but the bluest and strongest-lined group of k+a's lies in projection towards the central 1.4 Mpc of Coma and have radial velocities significantly higher than the cluster mean. We find a striking correlation between the positions of these young and strong post-starburst galaxies and substructure in the hot intracluster medium (ICM) identified from {\it XMM-Newton} data, with these galaxies lying close to the edges of two infalling substructures. This result strongly suggests that the interaction with the dense ICM could be responsible for the quenching of the star formation (thus creating the k+a spectrum), and possibly, for any previous starburst. The evolution with redshift of the luminosity distribution of k+a galaxies can be explained by a ``downsizing effect'', with the maximum luminosity/mass of actively star-forming galaxies infalling onto clusters decreasing at lower redshift. We discuss the possible physical origin of this downsizing effect and the implications of our results for current scenarios of environmental effects on the star formation in galaxies.Comment: 21 pages, 7 figures, to appear in ApJ, version after referee's change

    Mid-Infrared Emission from E+A Galaxies in the Coma Cluster

    Full text link
    We have used ISO to observe at 12μ\mum seven E+A galaxies plus an additional emission line galaxy, all in the Coma cluster. E+A galaxies lacking narrow emission lines have 2.2μ\mum to 12μ\mum flux density ratios or limits similar to old stellar populations (typical of early-type galaxies). Only galaxies with emission lines have enhanced 12μ\mum flux density. Excess 12μ\mum emission is therefore correlated with the presence of on-going star formation or an active galactic nucleus (AGN). By comparing the current star formation rates with previous rates estimated from the Balmer absorption features, we divide the galaxies into two groups: those for which star formation has declined significantly following a dramatic peak \sim 1 Gyr ago; and those with a significant level of ongoing star formation or/and an AGN. There is no strong difference in the spatial distribution on the sky between these two groups. However, the first group has systemic velocities above the mean cluster value and the second group below that value. This suggests that the two groups differ kinematically. Based on surveys of the Coma cluster in the radio, the IRAS sources, and galaxies detected in Hα\alpha emission, we sum the far infrared luminosity function of galaxies in the cluster. We find that star formation in late type galaxies is probably the dominant component of the Coma cluster far infrared luminosity. The presence of significant emission from intracluster dust is not yet firmly established. The member galaxies also account for most of the far infrared output from nearby rich clusters in general.Comment: AAS Latex, accepted for publication in Ap

    Age, Metallicity and Star Formation History of Cluster Galaxies at z~0.3 F

    Get PDF
    We investigate the color-magnitude distribution in the rich cluster AC 118 at z=0.31. The sample is selected by the photometric redshift technique, allowing to study a wide range of properties of stellar populations, and is complete in the K-band, allowing to study these properties up to a given galaxy mass. We use galaxy templates based on population synthesis models to translate the physical properties of the stellar populations - formation epoch, time-scale of star formation, and metallicity - into observed magnitudes and colors. In this way we show that a sharp luminosity-metallicity relation is inferred without any assumption on the galaxy formation scenario (either monolithic or hierarchical). Our data exclude significant differences in star formation histories along the color-magnitude relation, and therefore confirm a pure metallicity interpretation for its origin, with an early (z~5) formation epoch for the bulk of stellar populations. The dispersion in the color-magnitude diagram implies that fainter galaxies in our sample (K~18) ceased to form stars as late as z~0.5, in agreement with the picture that these galaxies were recently accreted into the cluster environment. The trend with redshift of the total stellar mass shows that half of the luminous mass in AC 118 was already formed at $z~2, but also that 20% of the stars formed at z<1.Comment: 16 pages, 10 figures. ApJ in pres

    Deep near-infrared luminosity function of a cluster of galaxies at z=0.3

    Get PDF
    The deep near-infrared luminosity function of AC118, a cluster of galaxies at z=0.3, is presented. AC118 is a bimodal cluster, as evidenced both by our near-infrared images of lensed galaxies, by public X-ray Rosat images and by the spatial distribution of bright galaxies. Taking advantage of the extension and depth of our data, which sample an almost unexplored region in the depth vs. observed area diagram, we derive the luminosity function (LF), down to the dwarf regime (M*+5), computed in several cluster portions. The overall LF, computed on a 2.66 Mpc2 areas (H_0=50 km/s/Mpc), has an intermediate slope (alpha=-1.2). However, the LF parameters depend on the surveyed cluster region: the central concentration has 2.6^{+5.1}_{-1.7} times more bright galaxies and 5.3^{+7.2}_{-2.3} times less dwarfs per typical galaxy than the outer region, which includes galaxies at an average projected distance of ~580 kpc (errors are quoted at the 99.9 % confidence level). The LF in the secondary AC118 clump is intermediate between the central and outer one. In other words, the near-infrared AC118 LF steepens going from high to low density regions. At an average clustercentric distance of ~580 kpc, the AC118 LF is statistically indistinguishable from the LF of field galaxies at similar redshift, thus suggesting that the hostile cluster environment plays a minor role in shaping the LF at large clustercentric distances, while it strongly affects the LF at higher galaxy density.Comment: ApJ, in press. The whole paper with all high resolution images is available at http://www.na.astro.it/~andreon/listapub.htm
    corecore