113 research outputs found
Picosecond fluctuating protein energy landscape mapped by pressure–temperature molecular dynamics simulation
Microscopic statistical pressure fluctuations can, in principle, lead to corresponding fluctuations in the shape of a protein energy landscape. To examine this, nanosecond molecular dynamics simulations of lysozyme are performed covering a range of temperatures and pressures. The well known dynamical transition with temperature is found to be pressure-independent, indicating that the effective energy barriers separating conformational substates are not significantly influenced by pressure. In contrast, vibrations within substates stiffen with pressure, due to increased curvature of the local harmonic potential in which the atoms vibrate. The application of pressure is also shown to selectively increase the damping of the anharmonic, low-frequency collective modes in the protein, leaving the more local modes relatively unaffected. The critical damping frequency, i.e., the frequency at which energy is most efficiently dissipated, increases linearly with pressure. The results suggest that an invariant description of protein energy landscapes should be subsumed by a fluctuating picture and that this may have repercussions in, for example, mechanisms of energy dissipation accompanying functional, structural, and chemical relaxation
Overexpression of Glyoxalase-I in Bovine Endothelial Cells Inhibits Intracellular Advanced Glycation Endproduct Formation and prevents hyperglycemia-induced increases in macromolecular endocytosis.
Methylglyoxal (MG), a dicarbonyl compound produced by the fragmentation of triose phosphates, forms advanced glycation endproducts (AGEs) in vitro. Glyoxalase-I catalyzes the conversion of MG to S-D-lactoylglutathione, which in turn is converted to D-lactate by glyoxalase-II. To evaluate directly the effect of glyoxalase-I activity on intracellular AGE formation, GM7373 endothelial cells that stably express human glyoxalase-I were generated. Glyoxalase-I activity in these cells was increased 28-fold compared to neo-transfected control cells (21.80+/-0.1 vs. 0. 76+/-0.02 micromol/min/mg protein, n = 3, P \u3c 0.001). In neo-transfected cells, 30 mM glucose incubation increased MG and D-lactate concentration approximately twofold above 5 MM (35.5+/-5.8 vs. 19.6+/-1.6, P \u3c 0.02, n = 3, and 21.0+/-1.3 vs. 10.0+/-1.2 pmol/ 10(6) cells, n = 3, P \u3c 0.001, respectively). In contrast, in glyoxalase-I-transfected cells, 30 mM glucose incubation did not increase MG concentration at all, while increasing the enzymatic product D-lactate by \u3e 10-fold (18.9+/-3.2 vs. 18.4+/- 5.8, n = 3, P = NS, and 107.1+/-9.0 vs. 9.4+/-0 pmol/10(6) cells, n = 3, P \u3c 0.001, respectively). After exposure to 30 mM glucose, intracellular AGE formation in neo cells was increased 13.6-fold (2.58+/-0.15 vs. 0.19+/-0.03 total absorbance units, n = 3, P \u3c 0.001). Concomitant with increased intracellular AGEs, macromolecular endocytosis by these cells was increased 2.2-fold. Overexpression of glyoxalase-I completely prevented both hyperglycemia-induced AGE formation and increased macromolecular endocytosis
Household secondhand smoke exposure of elementary schoolchildren in Southern Taiwan and factors associated with their confidence in avoiding exposure: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Exposure to household Secondhand Smoke (SHS) poses a major health threat to children after an indoor smoking ban was imposed in Taiwan. This study aimed to assess the household SHS exposure in elementary school children in southern Taiwan and the factors associated with their avoidance of SHS exposure before and after the implementation of Taiwan's new Tobacco Hazards Prevention Act in 2009.</p> <p>Methods</p> <p>In this cross-sectional school-based study, data on household SHS exposure, avoidance of SHS and related variables was obtained from the 2008 and 2009 Control of School-aged Children Smoking Study Survey. A random sample of 52 elementary schools was included. A total of 4450 3-6 graders (aged 8-13) completed the questionnaire. Regression models analyzed factors of children's self-confidence to avoid household SHS exposure.</p> <p>Results</p> <p>Over 50% of children were found to have lived with a family member who smoked in front of them after the new law enacted, and 35% of them were exposed to household SHS more than 4 days a week. Having a positive attitude toward smoking (β = -0.05 to -0.06) and high household SHS exposure (β = -0.34 to -0.47) were significantly associated with a lower avoidance of SHS exposure. Comparing to girls, boys had lower scores in their knowledge of tobacco hazards; and this factor was significantly related to their SHS avoidance (β = 0.13-0.14).</p> <p>Conclusions</p> <p>The intervention program should enhance school children do actively avoid exposure to SHS in home settings, and more importantly, provide tobacco hazard knowledge to male students to avoid exposure to household SHS for themselves. The results also provide further evidence that Tobacco Hazards Prevention Act should perhaps be extended to the family environment in order to protect children from the hazards of household SHS exposure.</p
Automating the search of molecular motor templates by evolutionary methods
The first author is supported by a FPU grant (AP2007-03704) from the Ministerio de Educación of the Spanish Government, and has been supported by the BioEmergences project (code 28892) of the Sixth Framework Programme of the European Union. Our research group has been partially supported by the local government (Junta de Andalucía) through a grant for the GENEX project (P09-TIC-5123).Biological molecular motors are nanoscale devices capable of transforming chemical energy into mechanical work, which are being researched in many scientific disciplines. From a computational point of view, the characteristics and dynamics of these motors are studied at multiple time scales, ranging from very detailed and complex molecular dynamics simulations spanning a few microseconds, to extremely simple and coarse-grained theoretical models of their working cycles. However, this research is performed only in the (relatively few) instances known from molecular biology. In this work, results from elastic network analysis and behaviour-finding methods are applied to explore a subset of the configuration space of template molecular structures that are able to transform chemical energy into directed movement, for a fixed instance of working cycle. While using methods based on elastic networks limits the scope of our results, it enables the implementation of computationally lightweight methods, in a way that evolutionary search techniques can be applied to discover novel molecular motor templates. The results show that molecular motion can be attained from a variety of structural configurations, when a functional working cycle is provided. Additionally, these methods enable a new computational way to test hypotheses about molecular motors
Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis
<p>Abstract</p> <p>Background</p> <p>Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis.</p> <p>Methods</p> <p>For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias.</p> <p>Results</p> <p>The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%.</p> <p>Conclusions</p> <p>Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.</p
Minimum Free Energy Path of Ligand-Induced Transition in Adenylate Kinase
Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme
Discovering Conformational Sub-States Relevant to Protein Function
Background: Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these substates present significant challenges for their identification and characterization. Methods and Findings: To overcome these challenges we have developed a new computational technique, quasianharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions: Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. © 2011 Ramanathan et al
- …