18 research outputs found

    Garden varieties: how attractive are recommended garden plants to butterflies?

    Get PDF
    One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The “butterfly bush” Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpson’s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract

    Climate, energy and diversity

    No full text
    In recent years, a number of species–energy hypotheses have been developed to explain global patterns in plant and animal diversity. These hypotheses frequently fail to distinguish between fundamentally different forms of energy which influence diversity in dissimilar ways. Photosynthetically active radiation (PAR) can be utilized only by plants, though their abundance and growth rate is also greatly influenced by water. The Gibbs free energy (chemical energy) retained in the reduced organic compounds of tissue can be utilized by all heterotrophic organisms. Neither PAR nor chemical energy influences diversity directly. Both, however, influence biomass and/or abundance; diversity may then increase as a result of secondary population dynamic or evolutionary processes. Temperature is not a form of energy, though it is often used loosely by ecologists as a proxy for energy; it does, however, influence the rate of utilization of chemical energy by organisms. It may also influence diversity by allowing a greater range of energetic lifestyles at warmer temperatures (the metabolic niche hypothesis). We conclude that there is no single species/energy mechanism; fundamentally different processes link energy to abundance in plants and animals, and diversity is affected secondarily. If we are to make progress in elucidating these mechanisms, it is important to distinguish climatic effects on species' distribution and abundance from processes linking energy supply to plant and animal diversity

    Synchronization of adult activity of the archaic moth, Micropterix calthella L. (Lepidoptera, Micropterigidae), with anthesis of sedges (Carex spp. Cyperaceae) in an ancient wood

    No full text
    Micropterix calthella L. (Micropterigidae) is a small, day-flying moth from the basal-most extant lineage of the Lepidoptera. The species name reflects its conspicuous presence on Caltha palustris L. (Ranunculaceae). However, adults also favour sedges (Carex spp., Cyperaceae), on which they gather gregariously to feed on pollen and find mates. In a UK ancient wood, the phenology of eight sedge species together with individual moth and mating pair densities were monitored from 15th April to 8th June 2009. 4841 moth sightings were recorded. Moths on Carex spikes at various developmental stages were compared with null models to test for preference patterns. Approximately 99% of individuals selected Carex spikes where dehiscing anthers were present. The sedge phenology data suggest three distinct periods of pollen production. Overlaying this with the moth data reveals moth phenology strongly linked to a suite of early and mid-season woodland sedges. Of the twenty-eight other angiosperm species (seventeen families) in flower, only Ranunculus ficaria L. (Ranunculaceae) and R. repens L. attracted moths. Adult moths kept in captivity on potted Carex flacca Schreb. for 10 days laid eggs at the plant-soil interface. When C. flacca pollen production ceased, surviving adults were moved onto freshly dehiscing anthers of potted C. pallescens L., where they survived a further 14 days. Soil-dwelling first instar larvae were observed to consume C. sylvatica Huds leaves. In a choice experiment, larvae were significantly more likely to consume C. sylvatica than Stellaria media (L.) Vill. (Caryophyllaceae) leaf material (previously noted to be favoured by larvae). Synchrony between adult moths and Carex spp., and the use of Carex by both adults and larvae, suggests sedges may be host plants for M. calthella in lowland ancient woodlands

    Development, survival, and phenotypic plasticity in anthropogenic landscapes: trade-offs between offspring quantity and quality in the nettle-feeding peacock butterfly

    No full text
    Habitats selected for development may have important fitness consequences. This is relevant within the framework of niche shifts in human-dominated landscapes. Currently, the peacock butterfly (Aglais io) occurs ubiquitously, covering many habitat types, whereas its distribution used to be much more restricted. Indeed, its host plant (stinging nettle Urtica dioica) was limited to natural forest gaps on relatively nitrogen-rich soil, but due to land use changes and eutrophication, host plants are now quasi-omnipresent in Western Europe. In order to assess the impact of specific anthropogenic habitat types on host plant quality and environmental conditions for phenotypic trait values, an experiment was conducted in woodlands, field margins, and urban gardens. Larval development was studied in field enclosures, and adult traits were analyzed to test predicted effects of warmer and more nitrogen-rich conditions in field margins compared to woodlands and urban gardens. Survival to the adult stage was highest in woodlands and lowest in field margins, and whilst development time did not differ amongst habitat types, butterflies that developed in field margins were larger and had higher lipid content and wing loadings than conspecifics from woodlands and urban gardens. Nettles in field margins provided warmer microclimates. However, and contrary to predictions, the nitrogen level within host plant leaves was highest in woodlands. Hence, anthropogenic landscapes may pose a conflict for choosing what is ultimately the best breeding habitat, as survival was highest in woodlands (followed by urban gardens), but adults with highest fitness predictions were produced in field margins (and secondarily urban gardens)

    Butterfly density and behaviour in uncut hay meadow strips : behavioural ecological consequences of an agri-environmental scheme

    Get PDF
    Sparing zones from mowing has been proposed, and applied, to improve local conditions for survival and reproduction of insects in hay meadows. However, little is known about the efficiency of refuge zones and the consequences for local populations. We studied population densities of butterflies before and after mowing in the refuge zone of 15 meadows in 2009 and 2011. We also studied the behaviour of the meadow brown (Maniola jurtina) comparing nectar use, interactions and flights in the refuge zone before and after mowing. Densities of grassland butterflies in this zone doubled on average after mowing. The density of females of M. jurtina increased on average fourfold, while males showed a more modest increase. In line with the idea of increased scramble competition in the refuge zone after mowing, M. jurtina increased the time spent on nectar feeding, the preferred nectar source was visited more frequently, and females made more use of non-preferred nectar sources. Maniola jurtina did not interact more with conspecifics after mowing, but interactions lasted longer. Flight tracks did not change in linearity, but were faster and shorter after mowing. After mowing, only a part of the local grassland butterflies moved to the uncut refuge zone. The resulting concentration effect alters the time allocated to different activities, nectar use and movements. These aspects have been largely ignored for agri-environmental schemes and grassland management in nature reserves and raise questions about optimal quantities and quality of uncut refuge sites for efficient conservation of grassland arthropods in agricultural landscapes
    corecore