617 research outputs found

    Bayesian inference for within-herd prevalence of Leptospira interrogans serovar Hardjo using bulk milk antibody testing

    Get PDF
    Leptospirosis is the most widespread zoonosis throughout the world and human mortality from severe disease forms is high even when optimal treatment is provided. Leptospirosis is also one of the most common causes of reproductive losses in cattle worldwide and is associated with significant economic costs to the dairy farming industry. Herds are tested for exposure to the causal organism either through serum testing of individual animals or through testing bulk milk samples. Using serum results from a commonly used enzyme-linked immunosorbent assay (ELISA) test for Leptospira interrogans serovar Hardjo (L. hardjo) on samples from 979 animals across 12 Scottish dairy herds and the corresponding bulk milk results, we develop a model that predicts the mean proportion of exposed animals in a herd conditional on the bulk milk test result. The data are analyzed through use of a Bayesian latent variable generalized linear mixed model to provide estimates of the true (but unobserved) level of exposure to the causal organism in each herd in addition to estimates of the accuracy of the serum ELISA. We estimate 95% confidence intervals for the accuracy of the serum ELISA of (0.688, 0.987) and (0.975, 0.998) for test sensitivity and specificity, respectively. Using a percentage positivity cutoff in bulk milk of at most 41% ensures that there is at least a 97.5% probability of less than 5% of the herd being exposed to L. hardjo. Our analyses provide strong statistical evidence in support of the validity of interpreting bulk milk samples as a proxy for individual animal serum testing. The combination of validity and cost-effectiveness of bulk milk testing has the potential to reduce the risk of human exposure to leptospirosis in addition to offering significant economic benefits to the dairy industry

    Canine Leptospirosis, United States, 2002–2004

    Get PDF
    The proportion of positive Leptospira microscopic agglutination tests for 23,005 dogs significantly increased from 2002 to 2004 (p<0.002) regardless of the positive cutoff titer used and was highest (p<0.05) for serovars Autumnalis and Grippotyphosa. The strongest positive serologic correlation (r = 0.72) was between serovars Autumnalis and Pomona

    Polarographic reduction of uranium(VI) under complexing and noncomplexing conditions nature of the uranium(V) sulphate complex

    Full text link
    The polarographic reduction of U(VI) to U(V) in acid solution is sensitive to both type and concentration of anion present. Consequently, the reduction was studied using perchlorate as a non-complexing anion and sulphate as a complexing anion.In HClO4 solution, increasing the perchlorate concentration shifts to more positive potentials, which seem to correspond to junction potential effects. Increasing either HClO4 or perchlorate concentrations increases the limiting current slightly, which can be attributed to a higher rate of disproportionation of U(V); other factors, e.g., viscosity of the solution, tend to counteract the effect of the disproportionation.In sulphate media, UO2+ is not strongly complexed, the asociation constant for the U(V)-sulphate complex being ca. 0[middle dot]13, if UO2SO4 is the most stable uranyl sulphate complex present. The effect of acid on the stability of the latter complex confirms its existence as an uncharged species. Limiting currents are pseudo diffusion-controlled, e.g., increasing the solution viscosity by increasing the electrolyte content decreases the current; this is due to the maximum disproportionation rate of U(V) having been reached at even the lowest sulphuric acid level investigated; increasing the anion concentration consequently slows down diffusion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32451/1/0000534.pd

    Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory

    Get PDF
    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.This research work was funded by a Core Award from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). Also supported by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) awarded to TWR. CE was supported by the Swiss National Science Foundation (PA00P1_134135) and the Vienna Science and Technology Fund (WWTF VRG13-007)

    Modulation of Brain β-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice

    Get PDF
    International audienceBackground: Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (Y NPAR) on brain opioid, and more specifically on brain b-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with Y NPAR. Methodology/Principal Findings: Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the Y NPAR. An indirect effect of the Y NPAR on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P,0.0001) of the Y NPAR in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen's procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the Y NPAR. Conclusions/Significance: The contribution of Y NPAR on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the Y NPAR encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry, carried by Y NPAR) to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the proopiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males

    Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?

    Get PDF
    BackgroundLeptospirosis is a zoonotic disease infecting a broad range of mammalian hosts, and is re-emerging globally. California sea lions (Zalophus californianus) have experienced recurrent outbreaks of leptospirosis since 1970, but it is unknown whether the pathogen persists in the sea lion population or is introduced repeatedly from external reservoirs.MethodsWe analyzed serum samples collected over an 11-year period from 1344 California sea lions that stranded alive on the California coast, using the microscopic agglutination test (MAT) for antibodies to Leptospira interrogans serovar Pomona. We evaluated seroprevalence among yearlings as a measure of incidence in the population, and characterized antibody persistence times based on temporal changes in the distribution of titer scores. We conducted multinomial logistic regression to determine individual risk factors for seropositivity with high and low titers.ResultsThe serosurvey revealed cyclical patterns in seroprevalence to L. interrogans serovar Pomona, with 4-5 year periodicity and peak seroprevalence above 50%. Seroprevalence in yearling sea lions was an accurate index of exposure among all age classses, and indicated on-going exposure to leptospires in non-outbreak years. Analysis of titer decay rates showed that some individuals probably maintain high titers for more than a year following exposure.ConclusionThis study presents results of an unprecedented long-term serosurveillance program in marine mammals. Our results suggest that leptospirosis is endemic in California sea lions, but also causes periodic epidemics of acute disease. The findings call into question the classical dichotomy between maintenance hosts of leptospirosis, which experience chronic but largely asymptomatic infections, and accidental hosts, which suffer acute illness or death as a result of disease spillover from reservoir species

    Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection

    Get PDF
    Funding Information: RFBR grant 17–54-30002, Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2019-1660) to Olga Smirnova. Publisher Copyright: © 2021, The Author(s).Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.publishersversionPeer reviewe
    corecore