13,811 research outputs found

    Comparing supernova remnants around strongly magnetized and canonical pulsars

    Get PDF
    The origin of the strong magnetic fields measured in magnetars is one of the main uncertainties in the neutron star field. On the other hand, the recent discovery of a large number of such strongly magnetized neutron stars, is calling for more investigation on their formation. The first proposed model for the formation of such strong magnetic fields in magnetars was through alpha-dynamo effects on the rapidly rotating core of a massive star. Other scenarios involve highly magnetic massive progenitors that conserve their strong magnetic moment into the core after the explosion, or a common envelope phase of a massive binary system. In this work, we do a complete re-analysis of the archival X-ray emission of the Supernova Remnants (SNR) surrounding magnetars, and compare our results with all other bright X-ray emitting SNRs, which are associated with Compact Central Objects (CCOs; which are proposed to have magnetar-like B-fields buried in the crust by strong accretion soon after their formation), high-B pulsars and normal pulsars. We find that emission lines in SNRs hosting highly magnetic neutron stars do not differ significantly in elements or ionization state from those observed in other SNRs, neither averaging on the whole remnants, nor studying different parts of their total spatial extent. Furthermore, we find no significant evidence that the total X-ray luminosities of SNRs hosting magnetars, are on average larger than that of typical young X-ray SNRs. Although biased by a small number of objects, we found that for a similar age, there is the same percentage of magnetars showing a detectable SNR than for the normal pulsar population.Comment: 16 pages, 5 figures, Accepted for publication in MNRA

    Is there room for highly magnetized pulsar wind nebulae among those non-detected at TeV?

    Get PDF
    We make a time-dependent characterization of pulsar wind nebulae (PWNe) surrounding some of the highest spin-down pulsars that have not yet been detected at TeV. Our aim is assessing their possible level of magnetization. We analyze the nebulae driven by J2022+3842 in G76.9+1.0, J0540-6919 in N158A (the Crab twin), J1400--6325 in G310.6--1.6, and J1124--5916 in G292.0+0.18, none of which have been found at TeV energies. For comparison we refer to published models of G54.1+0.3, the Crab nebula, and develop a model for N157B in the Large Magellanic Cloud (LMC). We conclude that further observations of N158A could lead to its detection at VHE. According to our model, a FIR energy density of 5 eV cm3^{-3} could already lead to a detection in H.E.S.S. (assuming no other IC target field) within 50 hours of exposure and just the CMB inverse Compton contribution would produce VHE photons at the CTA sensitivity. We also propose models for G76.9+1.0, G310.6--1.6 and G292.0+1.8 which suggest their TeV detection in a moderate exposure for the latter two with the current generation of Cherenkov telescopes. We analyze the possibility that these PWNe are highly magnetized, where the low number of particles explains the residual detection in X-rays and their lack of detection at TeV energies.Comment: Accepted for publication in MNRA

    The effects of magnetic field, age, and intrinsic luminosity on Crab-like pulsar wind nebulae

    Get PDF
    We investigate the time-dependent behavior of Crab-like pulsar wind nebulae (PWNe) generating a set of models using 4 different initial spin-down luminosities (L0={1,0.1,0.01,0.001}×L0,CrabL_0 =\{1,0.1,0.01,0.001\} \times L_{0, {\rm Crab}}), 8 values of magnetic fraction (η=\eta = 0.001, 0.01, 0.03, 0.1, 0.5, 0.9, 0.99, and 0.999, i.e., from fully particle dominated to fully magnetically dominated nebulae), and 3 distinctive ages: 940, 3000, and 9000 years. We find that the self-synchrotron Compton (SSC) contribution is irrelevant for LSDL_{SD}=0.1, 1, and 10% of the Crab power, disregarding the age and the magnetic fraction. SSC only becomes relevant for highly energetic (70\sim 70% of the Crab), particle dominated nebulae at low ages (of less than a few kyr), located in a FIR background with relatively low energy density. Since no pulsar other than Crab is known to have these features, these results clarify why the Crab Nebula, and only it, is SSC dominated. No young PWN would be detectable at TeV energies if the pulsar's spin-down power is 0.1% Crab or lower. For 1% of the Crab spin-down, only particle dominated nebulae can be detected by H.E.S.S.-like telescopes when young enough (with details depending on the precise injection and environmental parameters). Above 10% of the Crab's power, all PWNe are detectable by H.E.S.S.-like telescopes if they are particle dominated, no matter the age. The impact of the magnetic fraction on the final SED is varied and important, generating order of magnitude variations in the luminosity output for systems that are otherwise the same (equal PP, P˙\dot P, injection, and environment).Comment: Accepted for publication in MNRA

    Integral Inequalities and their Applications to the Calculus of Variations on Time Scales

    Full text link
    We discuss the use of inequalities to obtain the solution of certain variational problems on time scales.Comment: To appear in Mathematical Inequalities & Applications (http://mia.ele-math.com). Accepted: 14.01.201

    The largest oxigen bearing organic molecule repository

    Full text link
    We present the first detection of complex aldehydes and isomers in three typical molecular clouds located within 200pc of the center of our Galaxy. We find very large abundances of these complex organic molecules (COMs) in the central molecular zone (CMZ), which we attribute to the ejection of COMs from grain mantles by shocks. The relative abundances of the different COMs with respect to that of CH3OH are strikingly similar for the three sources, located in very different environments in the CMZ. The similar relative abundances point toward a unique grain mantle composition in the CMZ. Studying the Galactic center clouds and objects in the Galactic disk having large abundances of COMs, we find that more saturated molecules are more abundant than the non-saturated ones. We also find differences between the relative abundance between COMs in the CMZ and the Galactic disk, suggesting different chemical histories of the grain mantles between the two regions in the Galaxy for the complex aldehydes. Different possibilities for the grain chemistry on the icy mantles in the GC clouds are briefly discussed. Cosmic rays can play an important role in the grain chemistry. With these new detections, the molecular clouds in the Galactic center appear to be one of the best laboratories for studying the formation of COMs in the Galaxy.Comment: 20 pages, 4 figures, accepted in Ap

    Analytical Modeling of Interference Aware Power Control for the Uplink of Heterogeneous Cellular Networks

    Full text link
    Inter-cell interference is one of the main limiting factors in current Heterogeneous Cellular Networks (HCNs). Uplink Fractional Power Control (FPC) is a well known method that aims to cope with such limiting factor as well as to save battery live. In order to do that, the path losses associated with Mobile Terminal (MT) transmissions are partially compensated so that a lower interference is leaked towards neighboring cells. Classical FPC techniques only consider a set of parameters that depends on the own MT transmission, like desired received power at the Base Station (BS) or the path loss between the MT and its serving BS, among others. Contrary to classical FPC, in this paper we use stochastic geometry to analyze a power control mechanism that keeps the interference generated by each MT under a given threshold. We also consider a maximum transmitted power and a partial compensation of the path loss. Interestingly, our analysis reveals that such Interference Aware (IA) method can reduce the average power consumption and increase the average spectral efficiency. Additionally, the variance of the interference is reduced, thus improving the performance of Adaptive Modulation and Coding (AMC) since the interference can be better estimated at the MT.Comment: 13 pages, 1 table and 7 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    How does breakup influence the total fusion of 6,7^{6,7}Li at the Coulomb barrier?

    Full text link
    Total (complete + incomplete) fusion excitation functions of 6,7^{6,7}Li on 59^{59}Co and 209^{209}Bi targets around the Coulomb barrier are obtained using a new continuum discretized coupled channel (CDCC) method of calculating fusion. The relative importance of breakup and bound-state structure effects on total fusion is particularly investigated. The effect of breakup on fusion can be observed in the total fusion excitation function. The breakup enhances the total fusion at energies just around the barrier, whereas it hardly affects the total fusion at energies well above the barrier. The difference between the experimental total fusion cross sections for 6,7^{6,7}Li on 59^{59}Co is notably caused by breakup, but this is not the case for the 209^{209}Bi target.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.

    Exploring the effects of magnetar bursts in pulsar wind nebulae

    Full text link
    We explore possible effects of a magnetar burst on the radio, X-ray, and gamma-ray flux of a pulsar wind nebula (PWN). We assume that the burst injects electron-positron pairs or powers the magnetic field and explore the total energy at injection and the spectral index needed in order to increase the X-ray flux by about one order of magnitude, as well as its decay time until reaching quiescence. We also explore magnetically powered phenomenology that could explain a temporary increase of the PWN synchrotron emitted flux and perhaps the relatively common lack of PWNe surrounding magnetars. This phenomenological study is of interest for fast radio bursts (FRBs) as well, given that the connection between magnetars and this kind of systems have been recently established observationally.Comment: 10 pages, 5 figures, accepted for publication in JHEA
    corecore