47 research outputs found

    Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation

    Get PDF
    The refractive index changes induced by swift ion-beam irradiation in silica have been measured either by spectroscopic ellipsometry or through the effective indices of the optical modes propagating through the irradiated structure. The optical response has been analyzed by considering an effective homogeneous medium to simulate the nanostructured irradiated system consisting of cylindrical tracks, associated to the ion impacts, embedded into a virgin material. The role of both, irradiation fluence and stopping power, has been investigated. Above a certain electronic stopping power threshold (∼2.5 keV/nm), every ion impact creates an axial region around the trajectory with a fixed refractive index (around n = 1.475) corresponding to a certain structural phase that is independent of stopping power. The results have been compared with previous data measured by means of infrared spectroscopy and small-angle X-ray scattering; possible mechanisms and theoretical models are discussed

    Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency

    Get PDF
    We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons

    Comparative study of ion beam-irradiation effects on silica and α-quartz: evidences for excitonic mechanisms

    Get PDF
    Introduction - SiO 2 •Simple composition and structure; Crystalline and amorphous phases •Adequate for atomistic simulations •Abundant in nature. Relevant for many technologies -Irradiation with swift heavy ions: •They provide EXTREME physical conditions •Very high excitation densities similar to high power lasers •Very high local temperatures •By playing with high energy and heavy mass (SHI) : •One can go from low electronic excitations (collisions regime) to high electronic excitations (electronic regim

    UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon-induced desorption processes

    Get PDF
    Ice mantles that formed on top of dust grains are photoprocessed by the secondary ultraviolet (UV) field in cold and dense molecular clouds. UV photons induce photochemistry and desorption of ice molecules. Experimental simulations dedicated to ice analogs under astrophysically relevant conditions are needed to understand these processes. We present UV-irradiation experiments of a pure CO2 ice analog. Calibration of the QMS allowed us to quantify the photodesorption of molecules to the gas phase. This information was added to the data provided by the FTIR on the solid phase to obtain a complete quantitative study of the UV photoprocessing of an ice analog. Experimental simulations were performed in an ultra-high vacuum chamber. Ice samples were deposited onto an infrared transparent window at 8K and were subsequently irradiated with a microwave-discharged hydrogen flow lamp. After irradiation, ice samples were warmed up until complete sublimation was attained. Photolysis of CO2 molecules initiates a network of photon-induced chemical reactions leading to the formation of CO, CO3 ,O2 , and O3 . During irradiation, photon-induced desorption of CO and, to a lesser extent, O2 and CO2 took place through a process called indirect desorption induced by electronic transitions (DIET), with maximum photodesorption yields (Ypd) of 1.2 x 10-2 molecules/incident photon , 9.3 x 10-4 molecules/incident photon , and 1.1 x 10-4 molecules/incident photon , respectively. Calibration of mass spectrometers allows a direct quantification of photodesorption yields instead of the indirect values that were obtained from infrared spectra in most previous works. Supplementary information provided by infrared spectroscopy leads to a complete quantification, and therefore a better understanding, of the processes taking place in UV-irradiated ice mantles

    Ionoluminescence induced by swift heavy ions in silica and quartz: a comparative analysis

    Full text link
    Ionoluminescence (IL) of the two SiO2 phases, amorphous silica and crystalline quartz, has been comparatively investigated in this work, in order to learn about the structural defects generated by means of ion irradiation and the role of crystalline order on the damage processes. Irradiations have been performed with Cl at 10 MeV and Br at 15 MeV, corresponding to the electronic stopping regime (i.e., where the electronic stopping power Se is dominant) and well above the amorphization threshold. The light-emission kinetics for the two main emission bands, located at 1.9 eV (652 nm) and 2.7 eV (459 nm), has been measured under the same ion irradiation conditions as a function of fluence for both, silica and quartz. The role of electronic stopping power has been also investigated and discussed within current views for electronic damage. Our experiments provide a rich phenomenological background that should help to elucidate the mechanisms responsible for light emission and defect creation

    Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications

    Get PDF
    The damage induced on quartz (c-SiO2) by heavy ions (F, O, Br) at MeV energies, where electronic stopping is dominant, has been investigated by RBS/C and optical methods. The two techniques indicate the formation of amorphous layers with an isotropic refractive index (n = 1.475) at fluences around 1014 cm−2 that are associated to electronic mechanisms. The kinetics of the process can be described as the superposition of linear (possibly initial Poisson curve) and sigmoidal (Avrami-type) contributions. The coexistence of the two kinetic regimes may be associated to the differential roles of the amorphous track cores and preamorphous halos. By using ions and energies whose maximum stopping power lies inside the crystal (O at 13 MeV, F at 15 MeV and F at 30 MeV) buried amorphous layer are formed and optical waveguides at the sample surface have been generated

    Tailoring the Optical Properties of Silica Irradiated with Swift Heavy Ions

    Get PDF
    Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (i.e., latent tracks). In the case of amorphous silica it has been reported that SHI irradiation originates nano-tracks of either higher density than the virgin material (for low electronic stopping powers, Se 12 keV/nm) [2]. The intermediate region has not been studied in detail but we will show in this work that essentially no changes in density occur in this zone. An interesting effect of the compaction is that the refractive index is increased with respect to that of the surroundings. In the first Se region it is clear that track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate and this has been used to produce optical waveguides. The optical effects of intermediate and high stopping powers, on the other hand, are largely unknown so far. In this work we have studied theoretically (molecular dynamics and optical simulations) and experimentally (irradiation with SHI and optical characterization) the dependence of the macroscopic optical properties (i.e., the refractive index of the effective medium, n_EMA) on the electronic stopping power of the incoming ions. Our results show that the refractive index of the irradiated silica is not increased in the intermediate region, as expected; however, the core-shell tracks of the high-Se region produce a quite effective enhancement of n_EMA that could prove attractive for the fabrication of optical waveguides at ultralow fluences (as low as 1E11 cm^-2). 1. J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, "Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2)," Nucl. Instrum. Meth. B 268, 3147-3150 (2010). 2. P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, "Fine structure in swift heavy ion tracks in amorphous SiO2," Phys. Rev. Lett. 101, 175503 (2008)

    Large Magnetoresistance of Isolated Domain Walls in La2/3Sr1/3MnO3 Nanowires

    Get PDF
    Generation, manipulation, and sensing of magnetic domain walls are cornerstones in the design of efficient spintronic devices. Half-metals are amenable for this purpose as large low field magnetoresistance signals can be expected from spin accumulation at spin textures. Among half metals, La1−xSrxMnO3 (LSMO) manganites are considered as promising candidates for their robust half-metallic ground state, Curie temperature above room temperature (Tc = 360 K, for x = 1/3), and chemical stability. Yet domain wall magnetoresistance is poorly understood, with large discrepancies in the reported values and conflicting interpretation of experimental data due to the entanglement of various source of magnetoresistance, namely, spin accumulation, anisotropic magnetoresistance, and colossal magnetoresistance. In this work, the domain wall magnetoresistance is measured in LSMO cross-shape nanowires with single-domain walls nucleated across the current path. Magnetoresistance values above 10% are found to be originating at the spin accumulation caused by the mistracking effect of the spin texture of the domain wall by the conduction electrons. Fundamentally, this result shows the importance on non-adiabatic processes at spin textures despite the strong Hund coupling to the localized t2g electrons of the manganite. These large magnetoresistance values are high enough for encoding and reading magnetic bits in future oxide spintronic sensors. © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.G.O. and D.S.-M. contributed equally to this work. The authors ac-knowledge received funding from the project To2Dox of FlagERA ERA-NET Cofund in Quantum Technologies implemented within the Euro-pean Union’s Horizon 2020 Program. This work was supported by Span-ish AEI through grants, PID2020-118078RB-I00, PID2020-11556RB-100and PID2020-117024GB-C43 and by Regional Government of MadridCAM through SINERGICO project Y2020/NMT-6661 CAIRO-CM. S.R.-G.also gratefully acknowledges the financial support of the Alexander vonHumboldt foundation. Work at CNRS/Thales supported by French ANR-22CE30-0020 "SUPERFAST". J.J.R was supported by the CSIC program forthe Spanish Recovery, Transformation and Resilience Plan funded by the Recovery and Resilience EU Facility EU regulation 2020/2094. The authorsthank the Helmholtz-Zentrum Berlin für Materialien und Energie for theallocation of synchrotron radiation beamtime.Open access funding enabled and organized by Projekt DEAL.Supporting InformationPeer reviewe

    Controlled sign reversal of electroresistance in oxide tunnel junctions by electrochemical-ferroelectric coupling

    Get PDF
    The persistence of ferroelectricity in ultrathin layers relies critically on screening or compensation of polarization charges which otherwise destabilize the ferroelectric state. At surfaces, charged defects play a crucial role in the screening mechanism triggering novel mixed electrochemical-ferroelectric states. At interfaces, however, the coupling between ferroelectric and electrochemical states has remained unexplored. Here, we make use of the dynamic formation of the oxygen vacancy profile in the nanometerthick barrier of a ferroelectric tunnel junction to demonstrate the interplay between electrochemical and ferroelectric degrees of freedom at an oxide interface. We fabricate ferroelectric tunnel junctions with a La_0.7Sr_0.3MnO_3 bottom electrode and BaTiO_3 ferroelectric barrier. We use poling strategies to promote the generation and transport of oxygen vacancies at the metallic top electrode. Generated oxygen vacancies control the stability of the ferroelectric polarization and modify its coercive fields. The ferroelectric polarization, in turn, controls the ionization of oxygen vacancies well above the limits of thermodynamic equilibrium, triggering the build up of a Schottky barrier at the interface which can be turned on and off with ferroelectric switching. This interplay between electronic and electrochemical degrees of freedom yields very large values of the electroresistance (more than 10^6% at low temperatures) and enables a controlled switching between clockwise and counterclockwise switching modes in the same junction (and consequently, a change of the sign of the electroresistance). The strong coupling found between electrochemical and electronic degrees of freedom sheds light on the growing debate between resistive and ferroelectric switching in ferroelectric tunnel junctions, and moreover, can be the source of novel concepts in memory devices and neuromorphie computing
    corecore