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We have determined the cross-section r for color center generation under single Br ion impacts on

amorphous SiO2. The evolution of the cross-sections, r(E) and r(Se), show an initial flat stage that

we associate to atomic collision mechanisms. Above a certain threshold value (Se> 2 keV/nm),

roughly coinciding with that reported for the onset of macroscopic disorder (compaction), r shows

a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is

necessary to create a non bridging oxygen hole center-E0 (NBOHC/E0) pair, whatever the input

energy. The data appear consistent with a non-radiative decay of self-trapped excitons. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4757886]

The effects of swift heavy ion (SHI) beams on dielectric

materials (electronic excitation regime) are the cumulative

result (overlapping) of disorder tracks caused by individual

ion impacts.1–5 In fact, the fluxes used in ion accelerators

and other irradiation technologies imply that the time inter-

val between successive ion impacts is much longer than the

time needed to modify the atomic network of the material,

around 10 ps. In other words, every impact only sees the

“ashes” that remain after the previous impacts. Moreover,

for SHI, the damaged region around the ion trajectory is only

of a few nanometers, so that below �1012 cm�2, the tracks

are well isolated and can be individually registered.6,7 There-

fore, the key problem is to understand the physical mecha-

nisms operating at the nanoscale, during single ion impacts,

which are responsible for structural modifications. This is

very relevant in many technologies such as fission and fusion

installations, the microelectronics and photonic industries,

and the degradation of component and devices in space mis-

sions and hadron therapies using heavy ions.8–11

So far, the microscopic mechanisms responsible for

point defect generation inside the ion track in the electronic

excitation regime remain to be elucidated and are still a

matter of controversy. In principle, molecular dynamics sim-

ulations provide an efficient tool to follow the effects of a

single ion impact.12,13 Unfortunately, those methods are not

capable to deal with the quantum-mechanical formalism suit-

able to describe the excited electronic plasma. Therefore,

phenomenological approaches, such as the thermal spike

model,2 are often used. They assume that the melting and

re-solidification of the hot region around the trajectory are

responsible for track formation. Although the thermal spike

model has been satisfactorily used2,6,14–16 to account for a

number of relevant features of the observed damage in

dielectrics, semiconductors, and even metals, it is becoming

clear that the relaxation of the dense electronic excitation

plays a very relevant role on the effects induced by SHI.11

Therefore, these excitation effects should be more deeply

investigated even at the phenomenological level. Moreover,

a lot of attention has been paid to the defects and color cen-

ters generated by different types of irradiation but the micro-

scopic mechanisms responsible for defect production under

SHI irradiation have not been elucidated yet. In this Letter,

we will address this problem for the case of silica, due to its

fundamental and technological relevance.

When one fast ion traverses the material, a high density

of e-h pairs are generated first, due to Coulomb interactions

between the incoming ion and the electron system.17 The

fast (ballistic) electrons or delta-electrons, mostly moving

along a direction perpendicular to the ion trajectory, rapidly

interact among themselves, and a thermal equilibrium is

reached in times around 10 fs. Next, electron-phonon inter-

action sets in and promotes the energy transfer from the elec-

tron system to the atomic lattice. The final outcome, taking

around 100–1000 fs, is the generation of a dense excitation

spike (e-h pairs), coexisting in thermal pseudo-equilibrium

with a thermal spike; being both bound to the ion trajectory.

These two spikes are the initial ingredients needed to

describe the later events associated to the relaxation of the

electronic excitation, leading to either light emission or

structural modifications and defect formation.18 Previous

phenomenological models have focused on the exclusive

effects of the thermal spike (phase transitions) whereas the

effect of exciton relaxation on the atomic structure has been

generally ignored. The role of the two spikes on the relative

importance of the radiative and non-radiative processes is

still unsolved and is a controversial issue, particularly

referred to the dynamics of defect generation.
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Silica samples of 7� 8 mm2 and 1 mm thickness, pro-

vided by Momentive, have been irradiated at room tempera-

ture in the 5 MV tandem accelerator at the Centro de

Microan�alisis de Materiales (CMAM-UAM),19 with Br ions

(mass number A¼ 79). The energies used as well as the pro-

jected ranges and the corresponding nuclear Sn and elec-

tronic Se stopping powers are listed in Table I. Note that the

choice of irradiations guarantees a rather constant collision

deposition rate but a large span of electronic energy deposi-

tions. Ion currents were in the range 10–30 nA to avoid over-

heating of the samples. The evolution of most abundant

color centers (NBOHC, E0, and ODCs, Oxygen Deficient

Centers) as a function of irradiation fluence has been moni-

tored through their optical absorption spectra, both in the

visible and UV range20,21 up to 8.2 eV, where the intrinsic

absorption is already relevant. The main parameters used to

fit the spectra are given in Table II; in addition to these

bands, another one located at 7.3 eV and having a FWHM of

0.65 eV has been included for a proper fitting, following a

recent work by Skuja.22

A representative optical absorption spectrum of SHI-

irradiated silica is shown in Fig. 1(a). The growth curves for

all color centers as a function of fluence / are Poisson-like,

N ¼ NSf1� expð�r/Þg; (1)

where N stands for the concentration per unit area, NS is the

saturation level, and r an effective production cross-section.

This behavior is exemplified in Fig. 1(b) for one of the irradi-

ation energies (15 MeV). Similar average volume concentra-

tions, c¼N/Rp (Rp is the projected range), up to around

1019 cm�3 are reached for all color centers in the surface

layer limited by the projected range of the ions. These con-

centrations are much higher than those obtained under purely

ionizing radiation like gamma rays (�1017 cm�3, not

shown), confirming that new structural precursors are being

created by the ion irradiation.23–25

The initial growth rate, j ¼ ðdN=d/Þ0, derived from

those coloring curves, provides the growth rate, j ¼ rNS, for

color center creation; i.e., the number of defects per single
ion impact within the damage track. The data for j as a func-

tion of the ion energy E and the electronic stopping power Se

are shown in Figures 2 and 3, respectively. Now, we will

focus our attention on the NBOHC and E0 centers because

they have lower data dispersion than the ODC-I centers,

which are possibly influenced by edge absorption. The

curves show an initial flat stage at low energies (stopping

powers) that can be attributed to atomic collision damage in

accordance with the nuclear stopping power of the Br ions

being essentially independent of energy (see Table I). Above

TABLE I. Main ion trajectory parameters obtained with SRIM 2008 (Refs.

43 and 44) for Bromine irradiations, where Sn max is 0.5 keV/nm.

E [MeV] Se (z¼ 0) [keV/nm] Sn (z¼ 0) [keV/nm] Rp [lm]

2 1.0 0.09 1.3

5 2.1 0.06 2.9

10 3.4 0.05 4.5

15 4.7 0.04 5.8

25 5.7 0.03 7.6

40 7.2 0.02 9.4

TABLE II. Main parameters used for the Gaussian deconvolution of the op-

tical absorption spectra.20,21

NBOHC ODC-II E0 NBOHC Extra Band ODC-I

Position (eV) 4.8 5 5.8 6.8 7.3 7.6

FWHM (eV) 1–1.2 0.35–0.4 0.8–0.9 1.8 0.6 0.5

F 0.05 0.15 0.15 0.5 – 0.4

FIG. 1. (a) Gaussian deconvolution of a typical spectrum of irradiated silica

and (b) kinetics for the overall density of the various color centers as a func-

tion of fluence. The fit to a Poisson law is depicted as solid lines. Both

graphics correspond to an irradiation with Bromine at 15 MeV.

FIG. 2. Growth rate of color centers: NBOHC (�), ODC-II (�), E0 (�), and

ODC-I (�) as a function of the total ion energy. Solid lines are drawn to vis-

ualize their evolution. Alternative abscissa scale is the overall e-h pair popu-

lation per impact.
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a certain energy deposition threshold (Sth) at the surface, j
experiences an approximately linear growth with the total

ion energy E and with Se, which should be associated to the

relaxation of the electronic excitation. At higher energies

and stopping powers, the linear rise bends down indicating

that other competing processes may become operative. It is

noteworthy that the threshold value for coloring obtained

from Fig. 3 (around 2 keV/nm) has not been reported so far.

It is in good accordance with that determined for the onset of

network compaction as determined from ion-hammering and

track etching experiments.26,27 Moreover, one observes that

for the NBOHC and E0 centers, j shows quite similar evolu-

tion and even magnitude, suggesting that they may be mostly

created as coupled pairs. The situation is quite similar to that

found under F2 excimer laser irradiation28 as well as under

above-edge synchrotron radiation.29 From the linear depend-

ence, j vs. E, one obtains that the number of generated

NBOHC/E0 pairs per MeV through electronic excitation is

�130, which implies an energetic cost of �7.5 keV per pair,

independent of ion energy. For comparison, the collision

mechanism generates around 600 pairs per Br impact.

In order to discuss the physical mechanisms for defect

production and, particularly, the role of temperature, we

have calculated the thermal and excitation spike profiles by

using the Szenes analytical approximation.14 One considers

that once reached thermal pseudo-equilibrium between the

electron and phonon systems (before cooling), taken as ini-

tial time, t¼ 0, the radial profiles for both spikes are Gaus-

sian with the same width, a0¼ 4.5 nm

Pðz; r; 0Þ ¼ Pðz; 0; 0Þ
p a2

0

exp � r2

a2
0

� �
; (2)

where P is independent for, either, the exciton concentration,

Nx, or the local temperature T. Nx represents the total number

of generated e-h pairs even if they do not form bound or self-

trapped pairs.30 The width a0 can be related to the mean free

path of the electrons as discussed by Toulemonde and

coworkers,2 using two coupled differential equations for

electrons and heat (phonon) transport. The maximum tem-

perature reached at the spike axis is TM ¼ Tð0; 0; 0Þ=
ðp a2

0Þ ¼ gSe=ðp a2
0q CÞ, with a thermal efficiency ratio,

g¼ 0.36 (Ref. 31) and the physical parameters (density q
and heat capacity C) reported for silica. Within this formal-

ism, authors have described track generation as a compaction

effect occurring above a certain temperature in the spike.

Then, the increase in the area of the track with stopping

power can be easily predicted. In view of a similar threshold

obtained here for the coloring yield, one may try to correlate

that yield j with the cross-section (area) of the track

(included in Fig. 3). The correlation is rather good, suggest-

ing that a certain density of color centers �0.05 defects per

nm3 is generated inside the track cross-section. Anyhow, one

still needs to understand which are the microscopic mecha-

nisms leading to bond scission and, consequently, to point

defect production. A thermal bond-breaking mechanism,

such as that invoked for LiNbO3,3 would predict a nonlinear

increasing concentration of defects with input energy that

does not agree with our experimental results.

As an alternative, let us now focus our attention on the

correlated exciton spike as the source for the color centers.

The possibility of exciton decay as the origin for defect pro-

duction in oxides has been proposed and extensively dis-

cussed by Itoh and Stoneham32 and it is well established for

halides. For SiO2, this mechanism appears strongly sup-

ported from some experimental works using irradiation with

high energy electrons,32–34 synchrotron photon pulses,35 and

laser pulses,36,37 although not direct proof is yet available for

the case of ion irradiation. Moreover, the non-radiative exci-

ton decay as a mechanism for point defect production in

silica and quartz has received strong support from a number

of theoretical studies on exciton dynamics and relaxa-

tion.38,39 The total electron-hole density at z obtained by

integration of expression (2) along r is usually written in the

form: NxðzÞ ¼ SeðzÞ=I,40,41 where I is an effective ionization

energy and I � 3 EG (gap energy). For silica (EG� 8 eV),

integration along the whole trajectory yields NX�E (eV)/25.

For the energies used in our irradiations, this electron-hole

density becomes close to the atomic density of the material,

suggesting the formation of dense electron-hole plasma. To

facilitate comparison, we have included as an additional ab-

scissa axis the total electro-hole density in Fig. 2. It comes

out from the figure that the relation j vs Nx is approximately

linear, indicating that the color center yield per excited e-h
pair is roughly constant, independently of the ion type and

energy. A relative constant efficiency of �0.1% of the total

e-h population is obtained for the conversion of pairs into

color centers, regardless of the temperature reached in the

spike. This yield, which refers to exciton formation and self-

trapping aside from defect formation, is not far from that

found for ion irradiation of alkali halides where the exciton

model is well established.42

Specific mechanisms that have been proposed28,29,36,37

for the processes of exciton relaxation in SiO2 are

� Si� O� Si � ) � Si• þ •O� Si � (3a)

� Si� O� Si � ) � Si� Si � þOðintÞ: (3b)

The first one becomes operative after one-photon absorption

of F2 excimer laser light has a quantum efficiency of 3 � 10�4

and accounts for the similar concentrations of NBOHC and

FIG. 3. Growth rate of color centers: NBOHC (�), ODC-II (�), E0 (�), and

ODC-I (�) as a function of the electronic stopping power at the surface.

Also is shown the area of the track for a single ion impact (� and � were

taken from the literature45,46). Solid lines are a linear fit of the data. Alterna-

tive abscissa scale is the maximum temperature reached at the spike.
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E0 centers. Note that this efficiency is not very different from

that found in our experiments. On the other hand, reaction

(3b), leading to Frenkel pairs, explains the formation of the

ODCs. Our data indicate that, under ion irradiation, both

channels operate in parallel and could be derived from a

common exciton recombination event. A remarkable finding

by Hosono et al.28 is that the recombination giving rise to

Eq. (3b) preferentially occurs at heavily strained bonds,

which correspond mostly to three- and four-membered rings.

The possibility that the threshold for color center formation

found in this work may be due to the bond straining associ-

ated to compaction by irradiation would account for the coin-

cidence between both thresholds and should be investigated

in further works. This may reveal the connection between

the macroscopic and microscopic effects of irradiation.

In summary, the data offered in this work suggest that

electronic excitation plays an important role in the genera-

tion of point defects in silica under SHI irradiation. In view

of the available theoretical and experimental information,

one may safely propose that the color centers are generated

by non-radiative decay of self-trapped excitons and that no

energy barrier has to be overcome to generate the defects. A

threshold stopping power for color center generation has

been obtained and approximately coincides with that previ-

ously found for network compaction. The details of such pro-

cess should deserve further experimental and theoretical

work to become fully understood. Approximated values for

the energetic yield of the electronic processes have been cal-

culated, providing relevant information for scientists and

engineers dealing with ion-beam damage to materials.
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