37 research outputs found

    GW25-e0848 The effects of anticoagulant therapy on coagulant state and platelet function following transcatheter closure of atrial septal defect

    Get PDF
    BACKGROUND: Motor cortex stimulation (MCS) was introduced in the early 1990s by Tsubokawa and his group for patients diagnosed with drug-resistant, central neuropathic pain. Inconsistencies concerning the details of this therapy and its outcomes and poor methodology of most clinical essays divide the neuromodulation society worldwide into "believers" and "nonbelievers." A European expert meeting was organized in Brussels, Belgium by the Benelux Neuromodulation Society in order to develop uniform MCS protocols in the preoperative, intraoperative, and postoperative courses. METHODS: An expert meeting was organized, and a questionnaire was sent out to all the invited participants before this expert meeting. An extensive literature research was conducted in order to enrich the results. RESULTS: Topics that were addressed during the expert meeting were 1) inclusion and exclusion criteria, 2) targeting and methods of stimulation, 3) effects of MCS, and 4) results from the questionnaire. CONCLUSIONS: Substantial commonalities but also important methodologic divergencies emerged from the discussion of MCS experts from 7 European Centers. From this meeting and questionnaire, all participants concluded that there is a need for more homogenous standardized protocols for MCS regarding patient selection, implantation procedure, stimulation parameters, and follow-up-course

    IL-4 Deficiency Is Associated with Mechanical Hypersensitivity in Mice

    Get PDF
    Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion
    corecore