26 research outputs found

    HPLC for Simultaneous Quantification of Total Ceramide, Glucosylceramide, and Ceramide Trihexoside Concentrations in Plasma

    Full text link
    BACKGROUND: Simple, reproducible assays are needed for the quantification of sphingolipids, ceramide (Cer), and sphingoid bases. We developed an HPLC method for simultaneous quantification of total plasma concentrations of Cer, glucosylceramide (GlcCer), and ceramide trihexoside (CTH). METHODS: After addition of sphinganine as internal calibrator, we extracted lipids from 50 microL plasma. We deacylated Cer and glycosphingolipids by use of microwave-assisted hydrolysis in methanolic NaOH, followed by derivatization of the liberated amino-group with o-phthaldialdehyde. We separated the derivatized sphingoid bases and lysoglycosphingolipids by HPLC on a C18 reversed-phase column with a methanol/water mobile phase (88:12, vol/vol) and quantified them by use of a fluorescence detector at lambda(ex) 340 nm and lambda(em) 435 nm. RESULTS: Optimal conditions in the Solids/Moisture System SAM-155 microwave oven (CEM Corp.) for the complete deacylation of Cer and neutral glycosphingolipids without decomposition were 60 min at 85% power, fan setting 7. Intra- and interassay CVs were <4% and <14%, respectively, and recovery rates were 87%-113%. The limit of quantification was 2 pmol (0.1 pmol on column), and the method was linear over the interval of 2-200 microL plasma. In samples from 40 healthy individuals, mean (SD) concentrations were 9.0 (2.3) micromol/L for Cer, 6.3 (1.9) micromol/L for GlcCer, and 1.7 (0.5) micromol/L for CTH. Plasma concentrations of GlcCer were higher in Gaucher disease patient samples and of CTH in Fabry disease patient samples. CONCLUSIONS: HPLC enables quantification of total Cer, GlcCer, and CTH in plasma and is useful for the follow-up of patients on therapy for Gaucher or Fabry diseas

    1,6-Cyclophellitol Cyclosulfates : A New Class of Irreversible Glycosidase Inhibitor

    Get PDF
    The essential biological roles played by glycosidases, coupled to the diverse therapeutic benefits of pharmacologically targeting these enzymes, provide considerable motivation for the development of new inhibitor classes. Cyclophellitol epoxides and aziridines are recently established covalent glycosidase inactivators. Inspired by the application of cyclic sulfates as electrophilic equivalents of epoxides in organic synthesis, we sought to test whether cyclophellitol cyclosulfates would similarly act as irreversible glycosidase inhibitors. Here we present the synthesis, conformational analysis, and application of novel 1,6-cyclophellitol cyclosulfates. We show that 1,6-epi-cyclophellitol cyclosulfate (α-cyclosulfate) is a rapidly reacting α-glucosidase inhibitor whose 4C1 chair conformation matches that adopted by α-glucosidase Michaelis complexes. The 1,6-cyclophellitol cyclosulfate (β-cyclosulfate) reacts more slowly, likely reflecting its conformational restrictions. Selective glycosidase inhibitors are invaluable as mechanistic probes and therapeutic agents, and we propose cyclophellitol cyclosulfates as a valuable new class of carbohydrate mimetics for application in these directions

    1,6-Cyclophellitol Cyclosulfates : A New Class of Irreversible Glycosidase Inhibitor

    Get PDF
    The essential biological roles played by glycosidases, coupled to the diverse therapeutic benefits of pharmacologically targeting these enzymes, provide considerable motivation for the development of new inhibitor classes. Cyclophellitol epoxides and aziridines are recently established covalent glycosidase inactivators. Inspired by the application of cyclic sulfates as electrophilic equivalents of epoxides in organic synthesis, we sought to test whether cyclophellitol cyclosulfates would similarly act as irreversible glycosidase inhibitors. Here we present the synthesis, conformational analysis, and application of novel 1,6-cyclophellitol cyclosulfates. We show that 1,6-epi-cyclophellitol cyclosulfate (α-cyclosulfate) is a rapidly reacting α-glucosidase inhibitor whose 4C1 chair conformation matches that adopted by α-glucosidase Michaelis complexes. The 1,6-cyclophellitol cyclosulfate (β-cyclosulfate) reacts more slowly, likely reflecting its conformational restrictions. Selective glycosidase inhibitors are invaluable as mechanistic probes and therapeutic agents, and we propose cyclophellitol cyclosulfates as a valuable new class of carbohydrate mimetics for application in these directions

    Activity-based probes for functional interrogation of retaining β-glucuronidases

    Get PDF
    Humans express at least two distinct β-glucuronidase enzymes that are involved in disease: exo-acting β-glucuronidase (GUSB), whose deficiency gives rise to mucopolysaccharidosis type VII, and endo-acting heparanase (HPSE), whose overexpression is implicated in inflammation and cancers. The medical importance of these enzymes necessitates reliable methods to assay their activities in tissues. Herein, we present a set of β-glucuronidase-specific activity-based probes (ABPs) that allow rapid and quantitative visualization of GUSB and HPSE in biological samples, providing a powerful tool for dissecting their activities in normal and disease states. Unexpectedly, we find that the supposedly inactive HPSE proenzyme proHPSE is also labeled by our ABPs, leading to surprising insights regarding structural relationships between proHPSE, mature HPSE, and their bacterial homologs. Our results demonstrate the application of β-glucuronidase ABPs in tracking pathologically relevant enzymes and provide a case study of how ABP-driven approaches can lead to discovery of unanticipated structural and biochemical functionality

    Treatment of Fabry Disease: Outcome of a Comparative Trial with Agalsidase Alfa or Beta at a Dose of 0.2 mg/kg

    Get PDF
    Two different enzyme preparations, agalsidase alfa (Replagal(TM), Shire) and beta (Fabrazyme(TM), Genzyme), are registered for treatment of Fabry disease. We compared the efficacy of and tolerability towards the two agalsidase preparations administered at identical protein dose in a randomized controlled open label trial.Thirty-four Fabry disease patients were treated with either agalsidase alfa or agalsidase beta at equal dose of 0.2 mg/kg biweekly. Primary endpoint was reduction in left ventricular mass after 12 and 24 months of treatment. Other endpoints included occurrence of treatment failure (defined as progression of cardiac, renal or cerebral disease), glomerular filtration rate, pain, anti-agalsidase antibodies, and globotriaosylceramide levels in plasma and urine. After 12 and 24 months of treatment no reduction in left ventricular mass was seen, which was not different between the two treatment groups. Also, no differences in glomerular filtration rate, pain and decline in globotriaosylceramide levels were found. Antibodies developed only in males (4/8 in the agalsidase alfa group and 6/8 in the agalsidase beta group). Treatment failure within 24 months of therapy was seen in 8/34 patients: 6 male patients (3 in each treatment group) and 2 female patients (both agalsidase alfa). The occurrence of treatment failures did not differ between the two treatment groups; chi(2) = 0.38 p = 0.54.Our study revealed no difference in reduction of left ventricular mass or other disease parameters after 12 and 24 months of treatment with either agalsidase alfa or beta at a dose of 0.2 mg/kg biweekly. Treatment failure occurred frequently in both groups and seems related to age and severe pre-treatment disease.International Standard Randomized Clinical Trial ISRCTN45178534 [http://www.controlled-trials.com/ISRCTN45178534]

    The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease

    No full text
    Parkinson's disease (PD) is a progressive neurodegenerative disease where dopaminergic neurons in the substantia nigra are lost, resulting in a decrease in striatal dopamine and, consequently, motor control. Dopaminergic degeneration is associated with the appearance of Lewy bodies, which contain membrane structures and proteins, including α-synuclein (α-Syn), in surviving neurons. PD displays a multifactorial pathology and develops from interactions between multiple elements, such as age, environmental conditions, and genetics. Mutations in the GBA1 gene represent one of the major genetic risk factors for PD. This gene encodes an essential lysosomal enzyme called β-glucocerebrosidase (GCase), which is responsible for degrading the glycolipid glucocerebroside into glucose and ceramide. GCase can generate glucosylated cholesterol via transglucosylation and can also degrade the sterol glucoside. Although the molecular mechanisms that predispose an individual to neurodegeneration remain unknown, the role of cholesterol in PD pathology deserves consideration. Disturbed cellular cholesterol metabolism, as reflected by accumulation of lysosomal cholesterol in GBA1-associated PD cellular models, could contribute to changes in lipid rafts, which are necessary for synaptic localization and vesicle cycling and modulation of synaptic integrity. α-Syn has been implicated in the regulation of neuronal cholesterol, and cholesterol facilitates interactions between α-Syn oligomers. In this review, we integrate the results of previous studies and describe the cholesterol landscape in cellular homeostasis and neuronal function. We discuss its implication in α-Syn and Lewy body pathophysiological mechanisms underlying PD, focusing on the role of GCase and cholesterol. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.This work was supported by grants from the Span-ish Ministries of Innovation, Science and Universities and Health, SocialServices and Equality and ISCIII, CIBERNED: PCIN2015-098,PID2019-111693RB-I00, CB06/05/0055, and PI2019/09-3; RamónAreces Foundation (172275); European Union’s Horizon 2020 researchand innovation program, AND-PD, grant agreement no. 848002 to R.M.;and NWO (grant no. BBOL-2007247202 to J.M.F.G.A.

    Structure of Human Chitotriosidase. Implications for Specific Inhibitor Design and Function of Mammalian Chitinase-like Lectins

    Get PDF
    Chitin hydrolases have been identified in a variety of organisms ranging from bacteria to eukaryotes. They have been proposed to be possible targets for the design of novel chemotherapeutics against human pathogens such as fungi and protozoan parasites as mammals were not thought to possess chitin-processing enzymes. Recently, a human chitotriosidase was described as a marker for Gaucher disease with plasma levels of the enzyme elevated up to 2 orders of magnitude. The chitotriosidase was shown to be active against colloidal chitin and is inhibited by the family 18 chitinase inhibitor allosamidin. Here, the crystal structure of the human chitotriosidase and complexes with a chitooligosaccharide and allosamidin are described. The structures reveal an elongated active site cleft, compatible with the binding of long chitin polymers, and explain the inactivation of the enzyme through an inherited genetic deficiency. Comparison with YM1 and HCgp-39 shows how the chitinase has evolved into these mammalian lectins by the mutation of key residues in the active site, tuning the substrate binding specificity. The soaking experiments with allosamidin and chitooligosaccharides give insight into ligand binding properties and allow the evaluation of differential binding and design of species-selective chitinase inhibitors.

    Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector

    Get PDF
    This study evaluates a clinically applicable lentiviral vector for treatment of Gaucher disease type 1. Hematopoietic stem cells transduced with the vector and transplanted into a mouse model successfully halted or reversed pathology. These data were used as proof-of-concept for regulatory filing enabling the commencement of an international phase 1/2 clinical trial
    corecore