28 research outputs found

    A Chaperone Trap Contributes to the Onset of Cystic Fibrosis

    Get PDF
    Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF

    3D mapping of soil organic carbon content and soil moisture with multiple geophysical sensors and machine learning

    No full text
    Abstract Soil organic C (SOC) and soil moisture (SM) affect the agricultural productivity of soils. For sustainable food production, knowledge of the horizontal as well as vertical variability of SOC and SM at field scale is crucial. Machine learning models using depth‐related data from multiple electromagnetic induction (EMI) sensors and a gamma‐ray spectrometer can provide insights into this variability of SOC and SM. In this work, we applied weighted conditioned Latin hypercube sampling to calculate 25 representative soil profile locations based on geophysical measurements on the surveyed agricultural field, for sampling and modeling. Ten additional random profiles were used for independent model validation. Soil samples were taken from four equal depth increments of 15 cm each. These were used to approximate polynomial and exponential functions to reproduce the vertical trends of SOC and SM as soil depth functions. We modeled the function coefficients of the soil depth functions spatially with Cubist and random forests with the geophysical measurements as environmental covariates. The spatial prediction of the depth functions provides three‐dimensional (3D) maps of the field scale. The main findings are (a) the 3D models of SOC and SM had low errors; (b) the polynomial function provided better results than the exponential function, as the vertical trends of SOC and SM did not decrease uniformly; and (c) the spatial prediction of SOC and SM with Cubist provided slightly lower error than with random forests. Hence, we recommend modeling the second‐degree polynomial with Cubist for 3D prediction of SOC and SM at field scale

    NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia.

    No full text
    Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB–dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer
    corecore