2,571 research outputs found

    The Local Leo Cold Cloud and New Limits on a Local Hot Bubble

    Full text link
    We present a multi-wavelength study of the local Leo cold cloud (LLCC), a very nearby, very cold cloud in the interstellar medium. Through stellar absorption studies we find that the LLCC is between 11.3 pc and 24.3 pc away, making it the closest known cold neutral medium cloud and well within the boundaries of the local cavity. Observations of the cloud in the 21-cm HI line reveal that the LLCC is very cold, with temperatures ranging from 15 K to 30 K, and is best fit with a model composed of two colliding components. The cloud has associated 100 micron thermal dust emission, pointing to a somewhat low dust-to-gas ratio of 48 x 10^-22 MJy sr^-1 cm^2. We find that the LLCC is too far away to be generated by the collision among the nearby complex of local interstellar clouds, but that the small relative velocities indicate that the LLCC is somehow related to these clouds. We use the LLCC to conduct a shadowing experiment in 1/4 keV X-rays, allowing us to differentiate between different possible origins for the observed soft X-ray background. We find that a local hot bubble model alone cannot account for the low-latitude soft X-ray background, but that isotropic emission from solar wind charge exchange does reproduce our data. In a combined local hot bubble and solar wind charge exchange scenario, we rule out emission from a local hot bubble with an 1/4 keV emissivity greater than 1.1 Snowdens / pc at 3 sigma, 4 times lower than previous estimates. This result dramatically changes our perspective on our local interstellar medium.Comment: 13 pages, 12 figures. Accepted for publication in the Astrophysical Journal. Vector figure version available at http://www.astro.columbia.edu/~jpeek

    Measurement of optical to electrical and electrical to optical delays with ps-level uncertainty

    Full text link
    We present a new measurement principle to determine the absolute time delay of a waveform from an optical reference plane to an electrical reference plane and vice versa. We demonstrate a method based on this principle with 2 ps uncertainty. This method can be used to perform accurate time delay determinations of optical transceivers used in fibre-optic time-dissemination equipment. As a result the time scales in optical and electrical domain can be related to each other with the same uncertainty. We expect this method to break new grounds in high-accuracy time transfer and absolute calibration of time-transfer equipment

    Physical Properties of Complex C Halo Clouds

    Get PDF
    Observations from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey of the tail of Complex C are presented and the halo clouds associated with this complex cataloged. The properties of the Complex C clouds are compared to clouds cataloged at the tail of the Magellanic Stream to provide insight into the origin and destruction mechanism of Complex C. Magellanic Stream and Complex C clouds show similarities in their mass distributions (slope = -0.7 and -0.6, respectively) and have a common linewidth of 20 - 30 km/s (indicative of a warm component), which may indicate a common origin and/or physical process breaking down the clouds. The clouds cataloged at the tail of Complex C extend over a mass range of 10^1.1 to 10^4.8 solar masses, sizes of 10^1.2 to 10^2.6 pc, and have a median volume density of 0.065 cm^(-3) and median pressure of (P/k) = 580 K cm^{-3}. We do not see a prominent two-phase structure in Complex C, possibly due to its low metallicity and inefficient cooling compared to other halo clouds. From assuming the Complex C clouds are in pressure equilibrium with a hot halo medium, we find a median halo density of 5.8 x 10^(-4) cm^(-3), which given a constant distance of 10 kpc, is at a z-height of ~3 kpc. Using the same argument for the Stream results in a median halo density of 8.4 x 10^(-5) x (60kpc/d) cm^(-3). These densities are consistent with previous observational constraints and cosmological simulations. We also assess the derived cloud and halo properties with three dimensional grid simulations of halo HI clouds and find the temperature is generally consistent within a factor of 1.5 and the volume densities, pressures and halo densities are consistent within a factor of 3.Comment: Accepted for publication in AJ. 54 pages, including 6 tables and 16 figure

    Electronic stability of silicon front-end hybrids

    Get PDF
    No description supplie

    A Cold Nearby Cloud Inside the Local Bubble

    Get PDF
    The high-latitude Galactic H I cloud toward the extragalactic radio source 3C 225 is characterized by very narrow 21 cm emission and absorption indicative of a very low H I spin temperature of about 20 K. Through high-resolution optical spectroscopy, we report the detection of strong, very narrow Na I absorption corresponding to this cloud toward a number of nearby stars. Assuming that the turbulent H I and Na I motions are similar, we derive a cloud temperature of 20 (+6, -8) K (in complete agreement with the 21 cm results) and a line-of-sight turbulent velocity of 0.37+/-0.08 km/s from a comparison of the H I and Na I absorption linewidths. We also place a firm upper limit of 45 pc on the distance of the cloud, which situates it well inside the Local Bubble in this direction and makes it the nearest-known cold diffuse cloud discovered to date.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter
    corecore