11,067 research outputs found

    A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions

    Full text link
    To show a mechanism leading to the breakdown of a particle picture for the multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high dimensions, we investigate the corresponding 2-dd nonlinear Schr{\"o}dinger equation (Gross-Pitaevskii equation) with use of a modified variational principle. A molecule of two identical Gaussian wavepackets has two degrees of freedom(DFs), the separation of center-of-masses and the wavepacket width. Without the inter-component interaction(ICI) these DFs show independent regular oscillations with the degenerate eigen-frequencies. The inclusion of ICI strongly mixes these DFs, generating a fat mode that breaks a particle picture, which however can be recovered by introducing a time-periodic ICI with zero average. In case of the molecule of three wavepackets for a three-component BEC, the increase of amplitude of ICI yields a transition from regular to chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure

    Modified Gravity at Astrophysical Scales

    Get PDF
    Using a perturbative approach we solve stellar structure equations for low-density (solar-type) stars whose interior is described with a polytropic equation of state in scenarios involving a subset of modified gravity theories. Rather than focusing on particular theories, we consider a model-independent approach in which deviations from General Relativity are effectively described by a single parameter Ο\xi. We find that for length scales below those set by stellar General Relativistic radii the modifications introduced by modified gravity can affect the computed values of masses and radii. As a consequence, the stellar luminosity is also affected. We discuss possible further implications for higher density stars and observability of the effects before described.Comment: 12 pages, 7figures, matches published versio

    Phase diagram of an extended Agassi model

    Get PDF
    Background: The Agassi model is an extension of the Lipkin-Meshkov-Glick model that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960's by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.Comment: Accepted for publication in PR

    An extended Agassi model: algebraic structure, phase diagram, and large size limit

    Get PDF
    The Agassi model is a schematic two-level model that involves pairing and monopole-monopole interactions. It is, therefore, an extension of the well known Lipkin-Meshkov-Glick (LMG) model. In this paper we review the algebraic formulation of an extension of the Agassi model as well as its bosonic realization through the Schwinger representation. Moreover, a mean-field approximation for the model is presented and its phase diagram discussed. Finally, a 1/j1/j analysis, with jj proportional to the degeneracy of each level, is worked out to obtain the thermodynamic limit of the ground state energy and some order parameters from the exact Hamiltonian diagonalization for finite−j-j.Comment: Accepted in Physica Scripta. Focus on SSNET 201

    Structural instability of vortices in Bose-Einstein condensates

    Full text link
    In this paper we study a gaseous Bose-Einstein condensate (BEC) and show that: (i) A minimum value of the interaction is needed for the existence of stable persistent currents. (ii) Vorticity is not a fundamental invariant of the system, as there exists a conservative mechanism which can destroy a vortex and change its sign. (iii) This mechanism is suppressed by strong interactions.Comment: 4 pages with 3 figures. Submitted to Phys. Rev. Let

    Wetland restoration and nitrate reduction: the example of the periurban wetland of Vitoria-Gasteiz (Basque Country, North Spain)

    Get PDF
    Changes in land use and agricultural intensification caused wetlands on the quaternary aquifer of Vitoria-Gasteiz (Basque Country) to disappear some years ago and nitrate concentration in groundwaters increased very quickly. The Basque Government recently declared the East Sector of this aquifer a Vulnerable Zone according to the 91/676/CEE European Directive. Recently, the wetlands have been restored through the closure of the main drainage ditches, the consequent elevation of the water table and the abondonment of agricultural practices near the wetlands. This is the case of the Zurbano wetland. Restoration has allowed the recovery of its biogeochemical function, which has reduced nitrate concentrations in waters. Nitrate concentrations which exceed 50 mg l–1 in groundwaters entering into the wetland are less than 10 mg l–1 at the outlet. Conditions in the wetland are conducive to the loss of nitrates: organic matter rich wetted soils, clay presence allowing a local semiconfined flow and very low hydraulic gradient. Water quality monitoring at several points around the wetland showed the processes involved in nitrate loss, although some aspects still remain unresolved. However, during storm events, the wetland effectively reduces the nitrate concentration entering the Alegria River, the most important river on the quaternary aquifer

    Coupling single molecule magnets to quantum circuits

    Get PDF
    In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (of the order of microseconds), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets.Comment: 23 pages, 12 figure

    Instanton classical solutions of SU(3) fixed point actions on open lattices

    Get PDF
    We construct instanton-like classical solutions of the fixed point action of a suitable renormalization group transformation for the SU(3) lattice gauge theory. The problem of the non-existence of one-instantons on a lattice with periodic boundary conditions is circumvented by working on open lattices. We consider instanton solutions for values of the size (0.6-1.9 in lattice units) which are relevant when studying the SU(3) topology on coarse lattices using fixed point actions. We show how these instanton configurations on open lattices can be taken into account when determining a few-couplings parametrization of the fixed point action.Comment: 23 pages, LaTeX, 4 eps figures, epsfig.sty; some comments adde

    Matrix Product States: Symmetries and Two-Body Hamiltonians

    Full text link
    We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.Comment: PDFLatex, 12 pages and 6 figure

    Machine learning techniques to select Be star candidates. An application in the OGLE-IV Gaia south ecliptic pole field

    Full text link
    Statistical pattern recognition methods have provided competitive solutions for variable star classification at a relatively low computational cost. In order to perform supervised classification, a set of features is proposed and used to train an automatic classification system. Quantities related to the magnitude density of the light curves and their Fourier coefficients have been chosen as features in previous studies. However, some of these features are not robust to the presence of outliers and the calculation of Fourier coefficients is computationally expensive for large data sets. We propose and evaluate the performance of a new robust set of features using supervised classifiers in order to look for new Be star candidates in the OGLE-IV Gaia south ecliptic pole field. We calculated the proposed set of features on six types of variable stars and on a set of Be star candidates reported in the literature. We evaluated the performance of these features using classification trees and random forests along with K-nearest neighbours, support vector machines, and gradient boosted trees methods. We tuned the classifiers with a 10-fold cross-validation and grid search. We validated the performance of the best classifier on a set of OGLE-IV light curves and applied this to find new Be star candidates. The random forest classifier outperformed the others. By using the random forest classifier and colour criteria we found 50 Be star candidates in the direction of the Gaia south ecliptic pole field, four of which have infrared colours consistent with Herbig Ae/Be stars. Supervised methods are very useful in order to obtain preliminary samples of variable stars extracted from large databases. As usual, the stars classified as Be stars candidates must be checked for the colours and spectroscopic characteristics expected for them
    • 

    corecore