608 research outputs found

    Mapping a Homopolymer onto a Model Fluid

    Full text link
    We describe a linear homopolymer using a Grand Canonical ensemble formalism, a statistical representation that is very convenient for formal manipulations. We investigate the properties of a system where only next neighbor interactions and an external, confining, field are present, and then show how a general pair interaction can be introduced perturbatively, making use of a Mayer expansion. Through a diagrammatic analysis, we shall show how constitutive equations derived for the polymeric system are equivalent to the Ornstein-Zernike and P.Y. equations for a simple fluid, and find the implications of such a mapping for the simple situation of Van der Waals mean field model for the fluid.Comment: 12 pages, 3 figure

    Growth laws and self-similar growth regimes of coarsening two-dimensional foams: Transition from dry to wet limits

    Full text link
    We study the topology and geometry of two dimensional coarsening foams with arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann's law, and the wet limit described by Marqusee equation, the relevant bubble characteristics are the Plateau border radius and a new variable, the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau borders interfaces. The resulting prediction is successfully tested, without adjustable parameter, using extensive bidimensional Potts model simulations. Simulations also show that a selfsimilar growth regime is observed at any liquid fraction and determine how the average size growth exponent, side number distribution and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals and other domains with coarsening driven by curvature

    Current induced transverse spin-wave instability in thin ferromagnets: beyond linear stability analysis

    Full text link
    A sufficiently large unpolarized current can cause a spin-wave instability in thin nanomagnets with asymmetric contacts. The dynamics beyond the instability is understood in the perturbative regime of small spin-wave amplitudes, as well as by numerically solving a discretized model. In the absence of an applied magnetic field, our numerical simulations reveal a hierarchy of instabilities, leading to chaotic magnetization dynamics for the largest current densities we consider.Comment: 14 pages, 10 figures; revtex

    A Hybrid Model for QCD Deconfining Phase Boundary

    Full text link
    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (TT) and vanishing baryon chemical potential (ÎĽB\mu_{B}). These calculations are of limited use at finite ÎĽB\mu_{B} due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite TT and ÎĽB=0\mu_{B}=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite ÎĽB\mu_{B} so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.Comment: 22 pages, 10 figures. corrected version published in Physical Review D. arXiv admin note: substantial text overlap with arXiv:1201.044

    Non-Collinear Ferromagnetic Luttinger Liquids

    Full text link
    The presence of electron-electron interactions in one dimension profoundly changes the properties of a system. The separation of charge and spin degrees of freedom is just one example. We consider what happens when a system consisting of a ferromagnetic region of non-collinearity, i.e. a domain wall, is coupled to interacting electrons in one-dimension (more specifically a Luttinger liquid). The ferromagnetism breaks spin charge separation and the presence of the domain wall introduces a spin dependent scatterer into the problem. The absence of spin charge separation and the effects of the electron correlations results in very different behaviour for the excitations in the system and for spin-transfer-torque effects in this model.Comment: 6 pages, submitted to Journal of Physics: Conference Series for JEMS 201

    Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method

    Full text link
    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods that are commonly used in PIC, the developed method does not produce numerical dispersion, and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma

    Correlated two-particle scattering on finite cavities

    Full text link
    The correlated two-particle problem is solved analytically in the presence of a finite cavity. The method is demonstrated here in terms of exactly solvable models for both the cavity as well as the two-particle correlation where the two-particle potential is chosen in separable form. The two-particle phase shift is calculated and compared to the single-particle one. The two-particle bound state behavior is discussed and the influence of the cavity on the binding properties is calculated.Comment: Derivation shortened and corrected, 14 pages 10 figure

    Shape oscillations in non-degenerate Bose gases - transition from the collisionless to the hydrodynamic regime

    Get PDF
    We investigate collective oscillations of non-degenerate clouds of Rb-87 atoms as a function of density in an elongated magnetic trap. For the low-lying M=0 monopole-quadrupole shape oscillation we measure the oscillation frequencies and damping rates. At the highest densities the mean-free-path is smaller than the axial dimension of the sample, which corresponds to collisionally hydrodynamic conditions. This allows us to cover the cross-over from the collisionless to the hydrodynamic regime. The experimental results show good agreement with theory. We also analyze the influence of trap anharmonicities on the oscillations in relation to observed temperature dependencies of the dipole and quadrupole oscillation frequencies. We present convenient expressions to quantify these effects.Comment: 10 pages, 5 figure

    SO(4) Invariant States in Quantum Cosmology

    Get PDF
    The phenomenon of linearisation instability is identified in models of quantum cosmology that are perturbations of mini-superspace models. In particular, constraints that are second order in the perturbations must be imposed on wave functions calculated in such models. It is shown explicitly that in the case of a model which is a perturbation of the mini-superspace which has S3S^3 spatial sections these constraints imply that any wave functions calculated in this model must be SO(4) invariant. (This replaces the previous corrupted version.)Comment: 15 page
    • …
    corecore