Intensive search for a proper and realistic equations of state (EOS) is still
continued for studying the phase diagram existing between quark gluon plasma
(QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the
strongly interacting matter at finite temperature (T) and vanishing baryon
chemical potential (μB). These calculations are of limited use at finite
μB due to the appearance of notorious sign problem. In the recent past,
we had constructed a hybrid model description for the QGP as well as HG phases
where we make use of a new excluded-volume model for HG and a
thermodynamically-consistent quasiparticle model for the QGP phase and used
them further to get QCD phase boundary and a critical point. Since then many
lattice calculations have appeared showing various thermal and transport
properties of QCD matter at finite T and μB=0. We test our hybrid
model by reproducing the entire data for strongly interacting matter and
predict our results at finite μB so that they can be tested in future.
Finally we demonstrate the utility of the model in fixing the precise location,
the order of the phase transition and the nature of CP existing on the QCD
phase diagram. We thus emphasize the suitability of the hybrid model as
formulated here in providing a realistic EOS for the strongly interacting
matter.Comment: 22 pages, 10 figures. corrected version published in Physical Review
D. arXiv admin note: substantial text overlap with arXiv:1201.044