128 research outputs found

    Tailoring electronic and optical properties of TiO2: nanostructuring, doping and molecular-oxide interactions

    Get PDF
    Titanium dioxide is one of the most widely investigated oxides. This is due to its broad range of applications, from catalysis to photocatalysis to photovoltaics. Despite this large interest, many of its bulk properties have been sparsely investigated using either experimental techniques or ab initio theory. Further, some of TiO2's most important properties, such as its electronic band gap, the localized character of excitons, and the localized nature of states induced by oxygen vacancies, are still under debate. We present a unified description of the properties of rutile and anatase phases, obtained from ab initio state of the art methods, ranging from density functional theory (DFT) to many body perturbation theory (MBPT) derived techniques. In so doing, we show how advanced computational techniques can be used to quantitatively describe the structural, electronic, and optical properties of TiO2 nanostructures, an area of fundamental importance in applied research. Indeed, we address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by showing how to combine nanostructural changes with doping. With this aim we compare TiO2's electronic properties for 0D clusters, 1D nanorods, 2D layers, and 3D bulks using different approximations within DFT and MBPT calculations. While quantum confinement effects lead to a widening of the energy gap, it has been shown that substitutional doping with boron or nitrogen gives rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Finally, we report how ab initio methods can be applied to understand the important role of TiO2 as electron-acceptor in dye-sensitized solar cells. This task is made more difficult by the hybrid organic-oxide structure of the involved systems.Comment: 32 pages, 8 figure

    Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine

    Get PDF
    Copper and zinc phthalocyanines and porphyrins are used in organic light emitting diodes and dye-sensitized solar cells. Using near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Cu 2p and Zn 2p edges, the unoccupied valence states at the Cu and Zn atoms are probed and decomposed into 3d and 4s contributions with the help of density functional calculations. A comparison with the N 1s edge provides the 2p states of the N atoms surrounding the metal, and a comparison with inverse photoemission provides a combined density of states.This work was supported by the NSF (Award Nos. CHE-1026245 and DMR-0537588 (SRC)) and by the DOE (Contract Nos. DE-FG02-01ER45917 (end station) and DE-AC03-76SF00098 (ALS)). J.M.G.L. and A.R. acknowledge financial support from Spanish MEC (FIS2007-65702-C02-01), ACI-Promociona (ACI2009-1036), Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-319-07), the European Union through the FP7 e-I3 ETSF (Contract No. 211956), and THEMA (Contract No. 228539) projects.Peer Reviewe

    Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N2H7+

    Get PDF
    The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N2H7+ were studied by means of ab initio and density-functional theory(DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H5O2+. All geometry optimizations carried out using wavefunction-based methods [Hartree–Fock, second and fourth order Möller–Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H3N–H+⋯NH3 conformation (C3v symmetry) with a small energy barrier (1.26kcal/mol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H3N⋯H+⋯NH3 structure (D3d point group). The instability of the symmetric D3d structure is shown to originate from the pseudo-Jahn–Teller mixing of the electronic A1g1ground state with five low lying excited states of A2u symmetry through the asymmetric α2u vibrational mode. A molecular orbital study of the pseudo-Jahn–Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH3 molecules and the transfer of electronic charge between the proton and the NH3 units (rebonding). The parallel study of the H5O2+ cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle–Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N–N distance in the D3d and C3v configurations of N2H7+ indicates a large anharmonic coupling between α2u-α1g modes along the proton-transfer dynamics. This issue was explored by solving numerically the vibrational Schrödinger equation corresponding to the bidimensional E[Q(α2u),Q(α1g)] energy surface calculated at the MP4/6-311++G** level of theory

    Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes

    Get PDF
    We use computational screening to systematically investigate the use of transition metal doped carbon nanotubes for chemical gas sensing. For a set of relevant target molecules (CO, NH3, H2S) and the main components of air (N2, O2, H2O), we calculate the binding energy and change in conductance upon adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube. Based on these descriptors, we identify the most promising dopant candidates for detection of a given target molecule. From the fractional coverage of the metal sites in thermal equilibrium with air, we estimate the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions

    Internal electric fields and color shift in Cr3+-based gemstones

    Get PDF
    Seeking to better understand the origin of the different colors of emerald and ruby, both ab initio periodic and cluster calculations have been carried out. The calculations reproduce the interatomic distances measured for pure Be3Si6Al2O18 and Al2O3 as well as the Cr3+?O2? distances in emerald and ruby. The mean Cr3+?O2? distance for Be3Si6Al2O18:Cr3+ and Al2O3:Cr3+ is found to be practically equal to 1.97 Ă…, in agreement with recent experimental values. The present calculations confirm that the variations of optical properties due to Cr3+ impurities along the series of ionic oxides can be understood merely through the CrO69? unit but subject to the electric field due to the rest of the lattice ions. As a salient feature it is proved that changes in electronic density and covalency due to the internal field are not the cause of the color shift. Therefore, the red color of ruby is not due to the polarization of the electronic cloud around chromium as a result of the C3 local symmetry. The present study also demonstrates that the variation of the ligand field splitting parameter, 10Dq, induced by the internal electric field comes mainly from the contributions of first shells of ions around the CrO69? unit. As a consequence, 10Dq in emerald is not influenced by the internal field, as the contribution from Be2+ first neighbors is practically compensated by that of Si4+ second neighbors. In contrast, in ruby the t2g levels are shifted by the internal field 0.24 eV more than the eg ones, so explaining the color shift in this gemstone in comparison with emerald. This result is shown to arise partially from the asymmetric form of the internal electrostatic potential along the C3 axis in Al2O3.Support from the Spanish Ministerio de Ciencia y TecnologĂ­a under Project No. FIS2009-07083 is acknowledge
    • …
    corecore