10,719 research outputs found
The IRAM-30m line survey of the Horsehead PDR: III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas
Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively
easily detected in our Galaxy and in other galaxies. We constrain their
chemistry through observations of two positions in the Horsehead edge: the
photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just
behind it. We systematically searched for lines of CH3CN, HC3N, C3N, and some
of their isomers in our sensitive unbiased line survey at 3, 2, and 1mm. We
derived column densities and abundances through Bayesian analysis using a large
velocity gradient radiative transfer model. We report the first clear detection
of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and
6 at the dense core position, and we resolved its hyperfine structure for 3
lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR
position. We computed new electron collisional rate coefficients for CH3CN, and
we found that including electron excitation reduces the derived column density
by 40% at the PDR position. While CH3CN is 30 times more abundant in the PDR
than in the dense core, HC3N has similar abundance at both positions. The
isomeric ratio CH3NC/CH3CN is 0.15+-0.02. In the case of CH3CN, pure gas phase
chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated
gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of
grains are destroyed through photo-desorption or thermal-evaporation in PDRs,
and through sputtering in shocks. (abridged)Comment: Accepted for publication in Astronomy & Astrophysic
Upper bound on the density of Ruelle resonances for Anosov flows
Using a semiclassical approach we show that the spectrum of a smooth Anosov
vector field V on a compact manifold is discrete (in suitable anisotropic
Sobolev spaces) and then we provide an upper bound for the density of
eigenvalues of the operator (-i)V, called Ruelle resonances, close to the real
axis and for large real parts.Comment: 57 page
Topological properties of quantum periodic Hamiltonians
We consider periodic quantum Hamiltonians on the torus phase space
(Harper-like Hamiltonians). We calculate the topological Chern index which
characterizes each spectral band in the generic case. This calculation is made
by a semi-classical approach with use of quasi-modes. As a result, the Chern
index is equal to the homotopy of the path of these quasi-modes on phase space
as the Floquet parameter (\theta) of the band is varied. It is quite
interesting that the Chern indices, defined as topological quantum numbers, can
be expressed from simple properties of the classical trajectories.Comment: 27 pages, 14 figure
Collisional excitation of water by hydrogen atoms
We present quantum dynamical calculations that describe the rotational
excitation of HO due to collisions with H atoms. We used a recent, high
accuracy potential energy surface, and solved the collisional dynamics with the
close-coupling formalism, for total energies up to 12 000 cm. From these
calculations, we obtained collisional rate coefficients for the first 45 energy
levels of both ortho- and para-HO and for temperatures in the range T =
5-1500 K. These rate coefficients are subsequently compared to the values
previously published for the HO / He and HO / H collisional
systems. It is shown that no simple relation exists between the three systems
and that specific calculations are thus mandatory
The IRAM-30m line survey of the Horsehead PDR: IV. Comparative chemistry of H2CO and CH3OH
Aims. We investigate the dominant formation mechanism of H2CO and CH3OH in
the Horsehead PDR and its associated dense core. Methods. We performed deep
integrations of several H2CO and CH3OH lines at two positions in the Horsehead,
namely the PDR and dense core, with the IRAM-30m telescope. In addition, we
observed one H2CO higher frequency line with the CSO telescope at both
positions. We determine the H2CO and CH3OH column densities and abundances from
the single-dish observations complemented with IRAM-PdBI high-angular
resolution maps (6") of both species. We compare the observed abundances with
PDR models including either pure gas-phase chemistry or both gas-phase and
grain surface chemistry. Results. We derive CH3OH abundances relative to total
number of hydrogen atoms of ~1.2e-10 and ~2.3e-10 in the PDR and dense core
positions, respectively. These abundances are similar to the inferred H2CO
abundance in both positions (~2e-10). We find an abundance ratio H2CO/CH3OH of
~2 in the PDR and ~1 in the dense core. Pure gas-phase models cannot reproduce
the observed abundances of either H2CO or CH3OH at the PDR position. Both
species are therefore formed on the surface of dust grains and are subsequently
photodesorbed into the gas-phase at this position. At the dense core, on the
other hand, photodesorption of ices is needed to explain the observed abundance
of CH3OH, while a pure gas-phase model can reproduce the observed H2CO
abundance. The high-resolution observations show that CH3OH is depleted onto
grains at the dense core. CH3OH is thus present in an envelope around this
position, while H2CO is present in both the envelope and the dense core itself.
Conclusions. Photodesorption is an efficient mechanism to release complex
molecules in low FUV-illuminated PDRs, where thermal desorption of ice mantles
is ineffective.Comment: 12 pages, 5 tables, 7 figures; Accepted for publication in A&
Laser-induced electron emission from a tungsten nanotip: identifying above threshold photoemission using energy-resolved laser power dependencies
We present an experiment studying the interaction of a strongly focused 25 fs
laser pulse with a tungsten nanotip, investigating the different regimes of
laser-induced electron emission. We study the dependence of the electron yield
with respect to the static electric field applied to the tip. Photoelectron
spectra are recorded using a retarding field spectrometer and peaks separated
by the photon energy are observed with a 45 % contrast. They are a clear
signature of above threshold photoemission (ATP), and are confirmed by
extensive spectrally resolved studies of the laser power dependence.
Understanding these mechanisms opens the route to control experiment in the
strong-field regime on nanoscale objects.Comment: 9 pages, 6 figure
Environmental protection of titanium alloys in centrifugal compressors at 500°C in saline atmosphere
The use of the titanium alloy Ti-6246 (Tiâ6Alâ2Snâ4Zrâ6Mo, wt-%) for gas turbine compressors allows an increase in working temperature and stress level. Under severe service conditions, the material experiences combined high temperature and high mechanical stress and, in saline atmospheres, stress corrosion cracking (SCC) can occur, leading to catastrophic mechanical failure. The present study was performed to evaluate the potential of several surface treatments to protect Ti-6246 alloy, after salt deposit, from hot salt SCC at temperatures ?500°C and 500 MPa static mechanical stress conditions. Shot peening, thermal oxidation and metalâceramic coatings were investigated. Experimental results confirm the existence of brittle stress corrosion phenomena marked by a low residual elongation of test samples and the presence of oxides on the fracture surfaces. Both shot peening and metalâceramic coatings increase the hot salt SCC resistance of the alloy. Times to rupture were improved by a factor of 3 for shot peening and by a factor of 10 for metalâceramic coatings. Inversely, the time to rupture of preoxidised alloys has been halved compared with uncoated alloys. As well as these interesting quantitative results, structural studies of metalâceramic coatings showed that they are mechanically and chemically compatible with the titanium alloy substructure and should work under severe thermomechanical stresses and aggressive atmospheres
- âŠ