3,816 research outputs found

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure

    Thermodynamics of an attractive 2D Fermi gas

    Full text link
    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behaviour.Comment: Contains minor revision

    Dynamics of a deformable body in a fast flowing soap film

    Full text link
    We study the behavior of an elastic loop embedded in a flowing soap film. This deformable loop is wetted into the film and is held fixed at a single point against the oncoming flow. We interpret this system as a two-dimensional flexible body interacting in a two-dimensional flow. This coupled fluid-structure system shows bistability, with both stationary and oscillatory states. In its stationary state, the loop remains essentially motionless and its wake is a von K\'arm\'an vortex street. In its oscillatory state, the loop sheds two vortex dipoles, or more complicated vortical structures, within each oscillation period. We find that the oscillation frequency of the loop is linearly proportional to the flow velocity, and that the measured Strouhal numbers can be separated based on wake structure

    Fast-slow asymptotic for semi-analytical ignition criteria in FitzHugh-Nagumo system

    Get PDF
    We study the problem of initiation of excitation waves in the FitzHugh-Nagumo model. Our approach follows earlier works and is based on the idea of approximating the boundary between basins of attraction of propagating waves and of the resting state as the stable manifold of a critical solution. Here, we obtain analytical expressions for the essential ingredients of the theory by singular perturbation using two small parameters, the separation of time scales of the activator and inhibitor, and the threshold in the activator's kinetics. This results in a closed analytical expression for the strength-duration curve.Comment: 10 pages, 5 figures, as accepted to Chaos on 2017/06/2

    Contact and sum-rules in a near-uniform Fermi gas at unitarity

    Full text link
    We present an experimental study of the high-energy excitation spectra of unitary Fermi gases. Using focussed beam Bragg spectroscopy, we locally probe atoms in the central region of a harmonically trapped cloud where the density is nearly uniform, enabling measurements of the dynamic structure factor for a range of temperatures both below and above the superfluid transition. Applying sum-rules to the measured Bragg spectra, we resolve the characteristic behaviour of the universal contact parameter, C{\cal C}, across the superfluid transition. We also employ a recent theoretical result for the kinetic (second-moment) sum-rule to obtain the internal energy of gases at unitarity.Comment: 5 pages, 4 figure

    The initial development of a jet caused by fluid, body and free surface interaction with a uniformly accelerated advancing or retreating plate. Part 1. The principal flow

    Get PDF
    The free surface and flow field structure generated by the uniform acceleration (with dimensionless acceleration σ) of a rigid plate, inclined at an angle α ∈ (0, π/2) to the exterior horizontal, as it advances (σ > 0) or retreats (σ < 0) from an initially stationary and horizontal strip of inviscid, incompressible fluid under gravity, are studied in the small-time limit via the method of matched asymptotic expansions. This work generalises the case of a uniformly accelerating plate advancing into a fluid as studied in Needham et al. (2008). Particular attention is paid to the innermost asymptotic regions encompassing the initial interaction between the plate and the free surface. We find that the structure of the solution to the governing initial boundary value problem is characterised in terms of the parameters α and μ (where μ = 1+σ tan α), with a bifurcation in structure as μ changes sign. This bifurcation in structure leads us to question the well-posedness and stability of the governing initial boundary value problem with respect to small perturbations in initial data in the innermost asymptotic regions, the discussion of which will be presented in the companion paper Gallagher et al. (2016) . In particular, when (α, μ) ∈ (0, π/2) × R+, the free surface close to the initial contact point remains monotone, and encompasses a swelling jet when (α, μ) ∈ (0, π/2)×[1,∞), or a collapsing jet when (α, μ) ∈ (0, π/2) × (0, 1). However, when (α, μ) ∈ (0, π/2) × R−, the collapsing jet develops a more complex structure, with the free surface close to the initial contact point now developing a finite number of local oscillations, with near resonance type behaviour occurring close to a countable set of critical plate angles α = α∗n ∈ (0, π/2) (n = 1, 2, . . .)

    Statistical characterization of the forces on spheres in an upflow of air

    Get PDF
    The dynamics of a sphere fluidized in a nearly-levitating upflow of air were previously found to be identical to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equation [Ojha {\it et al.}, Nature {\bf 427}, 521 (2004)]. The random forcing, the drag, and the trapping potential represent different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential between two spheres in an upflow of air.Comment: 7 pages, experimen
    corecore