7,510 research outputs found

    Efficiency of Human Activity on Information Spreading on Twitter

    Full text link
    Understanding the collective reaction to individual actions is key to effectively spread information in social media. In this work we define efficiency on Twitter, as the ratio between the emergent spreading process and the activity employed by the user. We characterize this property by means of a quantitative analysis of the structural and dynamical patterns emergent from human interactions, and show it to be universal across several Twitter conversations. We found that some influential users efficiently cause remarkable collective reactions by each message sent, while the majority of users must employ extremely larger efforts to reach similar effects. Next we propose a model that reproduces the retweet cascades occurring on Twitter to explain the emergent distribution of the user efficiency. The model shows that the dynamical patterns of the conversations are strongly conditioned by the topology of the underlying network. We conclude that the appearance of a small fraction of extremely efficient users results from the heterogeneity of the followers network and independently of the individual user behavior.Comment: 29 pages, 10 figure

    Input-output theory for spin-photon coupling in Si double quantum dots

    Full text link
    The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit

    A Coherent Spin-Photon Interface in Silicon

    Full text link
    Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins has been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and "all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2\pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons

    Global Patterns of Synchronization in Human Communications

    Full text link
    Social media are transforming global communication and coordination. The data derived from social media can reveal patterns of human behavior at all levels and scales of society. Using geolocated Twitter data, we have quantified collective behaviors across multiple scales, ranging from the commutes of individuals, to the daily pulse of 50 major urban areas and global patterns of human coordination. Human activity and mobility patterns manifest the synchrony required for contingency of actions between individuals. Urban areas show regular cycles of contraction and expansion that resembles heartbeats linked primarily to social rather than natural cycles. Business hours and circadian rhythms influence daily cycles of work, recreation, and sleep. Different urban areas have characteristic signatures of daily collective activities. The differences are consistent with a new emergent global synchrony that couples behavior in distant regions across the world. A globally synchronized peak that includes exchange of ideas and information across Europe, Africa, Asia and Australasia. We propose a dynamical model to explain the emergence of global synchrony in the context of increasing global communication and reproduce the observed behavior. The collective patterns we observe show how social interactions lead to interdependence of behavior manifest in the synchronization of communication. The creation and maintenance of temporally sensitive social relationships results in the emergence of complexity of the larger scale behavior of the social system.Comment: 20 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1602.0621

    Further Improvements in the Understanding of Isotropic Loop Quantum Cosmology

    Get PDF
    The flat, homogeneous, and isotropic universe with a massless scalar field is a paradigmatic model in Loop Quantum Cosmology. In spite of the prominent role that the model has played in the development of this branch of physics, there still remain some aspects of its quantization which deserve a more detailed discussion. These aspects include the kinematical resolution of the cosmological singularity, the precise relation between the solutions of the densitized and non-densitized versions of the quantum Hamiltonian constraint, the possibility of identifying superselection sectors which are as simple as possible, and a clear comprehension of the Wheeler-DeWitt (WDW) limit associated with the theory in those sectors. We propose an alternative operator to represent the Hamiltonian constraint which is specially suitable to deal with these issues in a satisfactory way. In particular, with our constraint operator, the singularity decouples in the kinematical Hilbert space and can be removed already at this level. Thanks to this fact, we can densitize the quantum Hamiltonian constraint in a rigorous manner. Besides, together with the physical observables, this constraint superselects simple sectors for the universe volume, with a support contained in a single semiaxis of the real line and for which the basic functions that encode the information about the geometry possess optimal physical properties. Namely, they provide a no-boundary description around the cosmological singularity and admit a well-defined WDW limit in terms of standing waves. Both properties explain the presence of a generic quantum bounce replacing the singularity at a fundamental level, in contrast with previous studies where the bounce was proved in concrete regimes and focusing on states with a marked semiclassical behavior.Comment: 13 pages, version accepted for publication in Physical Review

    Maximum population transfer in a periodically driven two-level system

    Get PDF
    We study the dynamics of a two-level quantum system under the influence of sinusoidal driving in the intermediate frequency regime. Analyzing the Floquet quasienergy spectrum, we find combinations of the field parameters for which population transfer is optimal and takes place through a series of well defined steps of fixed duration. We also show how the corresponding evolution operator can be approximated at all times by a very simple analytical expression. We propose this model as being specially suitable for treating periodic driving at avoided crossings found in complex multi-level systems, and thus show a relevant application of our results to designing a control protocol in a realistic molecular modelComment: 7 pages, 6 figure
    • …
    corecore