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Maximum population transfer in a periodically driven quantum system
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We study the dynamics of a two-level quantum system under the influence of sinusoidal driving in the
intermediate-frequency regime. Analyzing the Floquet quasienergy spectrum, we find combinations of the field
parameters for which population transfer is optimal and takes place through a series of well-defined steps of fixed
duration. We also show how the corresponding evolution operator can be approximated at all times by a very
simple analytical expression. We propose this model as being specially suitable for treating periodic driving at
avoided crossings found in complex multilevel systems, and thus show a relevant application of our results to
designing a control protocol in a realistic molecular model.
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I. INTRODUCTION

Understanding the coherent manipulation of quantum
systems using time-dependent interacting fields is a goal of
primary interest in many different areas, including chemical
reactivity [1], nanotechnology [2], and quantum information
processing [3]. To this end, simple analytically solvable
two-level systems (TLSs) are often used since they can
efficiently describe the dynamics. One popular choice is the
Landau-Zener model [4], in which the driving field is assumed
to vary linearly with time. Nonetheless, in many experimental
situations sinusoidal, time-periodic control fields are easier to
produce and manipulate, and are thus the preferred option.
Beyond the well-known Rabi model (which accounts for the
weak driving case), many approaches have been used in the
literature to describe various nontrivial limits of this type of
systems [5-8].

A striking phenomenon induced by time-periodic fields
is the so-called coherent destruction of tunneling (CDT),
first predicted by Grossmann et al. [9] and then observed
experimentally [10]. A particle in a symmetric double-well
potential usually oscillates back and forth, if initially localized
in one of the wells. However, if the depth of the wells oscillates
in time, the tunneling rate may dramatically change. Actually,
for certain combinations of the driving parameters, the rate
vanishes, resulting in an effective localization of the particle in
the initial well. As previously shown [9,11], this behavior takes
place only when some Floquet quasienergies are degenerate.

In this work, we show that the Floquet spectrum of a
TLS under a sinusoidal driving in the regime of intermediate
frequencies (w >~ A, being w the driving frequency and A
the characteristic frequency of the system [12]) shows a
second kind of special points, defined by the condition that
the quasienergy separation is a local maximum, where: (i)
population inversion is achieved after a time interval that only
depends on the quasienergy difference; (ii) the evolution of the
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populations happens through a series of well-defined steps of
fixed duration, in which the probability remains approximately
constant, and (iii) the full time-dependent evolution operator
U(t) can be obtained in a very simple analytical form, which
provides a clear physical interpretation of (ii).

Finally, taking into account the general validity of this
two-level model, we study at what extent the results we obtain
can be applied to multilevel systems, which are periodically
driven at an avoided crossings (ACs). By designing of a
control protocol in a realistic model for the LiNC=LiCN
isomerization [13,14], we find that the intermediate-frequency
regime is specially suitable for such complex systems.

This paper is organized as follows. In Sec. II we present the
model system, enumerate the main results of the well-known
high-frequency regime, and present the basics of the Floquet
formalism. We then turn to the intermediate-frequency regime,
where we show that the dynamics of the system changes
considerably, showing a remarkably regular behavior for
certain values of the driving field amplitude. In Sec. III we
elaborate on the analysis and interpretation of these results,
and develop a very simple Bloch sphere model, which allows
us to get an analytical solution for the evolution operator.
Finally, in Sec. IV we describe the LiCN/LiNC molecular
system and propose a control protocol suitable for achieving
an isomerization reaction. Section V contains some concluding
remarks.

II. PERIODICALLY DRIVEN TWO-LEVEL SYSTEMS

We consider a Hamiltonian of the form

H() = %GX +e(t)o:, ey
where o, and o, are the usual Pauli operators. The in-
stantaneous eigenvalues of H as a function of the control
parameter & show the usual avoided crossing (AC) structure,
reaching a minimal separation of A at & = 0. We consider the
driving field to be () = A cos(wt), and define T =27 /w
as the period of H(t). When dealing with this type of
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systems, it is customary to factorize the evolution operator
as U(t) = Uy(t) Uy(t), where U, (t) = exp[—i y,(t) 0,/2] can
be regarded as a transformation to a rotating frame, since
Y. (1) =2 f &(t) dt = (2A/w)sin(wt). The remaining factor is
obtained by the transformed Schrodinger equation i Us(1) =
Hy (1) U(1), where Hy (1) = U HU, as

A
Hy(t) = —{cosly:(D)]oy + sinly:()]oy }- 2

The time dependence in this expression can be averaged out
over one period of the driving field in the high-frequency
regime, i.e., w > A, using the rotating wave approximation
(RWA) [6,11]. This gives Us(r) = exp(—i 5t 0,), with A’ =
AJp(2A/w), being Jy a Bessel function. For the values of
2A/w corresponding to the zeros of Jy, the evolution operator
U(t) is diagonal in the o, basis set, {|0),|1)}, which explains
the occurrence of the CDT phenomenon. For any other value
of the amplitude A the population inversion between these

states takes place in a finite lapse of time, given by

b4

When the RWA cannot be applied, a more general frame-
work has to be used. In this case, Floquet theory [5] shows that
for a time-periodic Hamiltonian a full set of orthonormal solu-
tions for the corresponding Schrodinger equation exists, which
are of the form | W, (1)) = exp(—ieyt)| Dy (1)), witha = 0,1 for
aTLS. The real-valued quantities {€, } are called quasienergies,
and the states {|®,(?))}, which share the periodicity of H (%),
are called Floquet states. The quasienergies can be obtained
in an easy way by diagonalizing U(T), something that can be
done by numerically computing the time evolution from r = 0
tot = T of an adequate basis set. In this way, the eigenphases
of U(T) give the desired quasienergies, which in the case
w > A, discussed above, simply correspond to

T 3)

/
€4 = + ) . (4)
This expression implies that the spectrum contains an infinite
set of degeneracies as A /w increases, and also that expression
(3) can be rewritten as Tr = 7w /|4 — €_]|.

When computed for lower frequencies, the quasienergy
spectrum changes considerably for small amplitudes [15], as
shown in Fig. 1 (top) for the case w = A. However, the results
still show the typical ribbon structure [16], and expression (4)
remains a reasonable approximation for A/w 2 3. In order to
compare the population dynamics in this model as opposed
to the high-frequency regime, we study the validity of
expression (3). For that purpose, we simulate the evolution of
the system starting from |0) for different values of amplitude,
calculating the nondecay probability Pyp(1) = |< 0y (1))]?
at time t = TF, in each case. The results that are shown in
Fig. 1 (bottom) reflect a more complex behavior than that
predicted by the high-frequency model, in which Py p(Tr) = 0
is expected for every value of A corresponding to finite 7.

More interesting is the fact that the results of Fig. 1
reveal the existence of a new outstanding feature: the points
for which Pyp =~ 0 pack around certain values of A, which
correspond to the points of local maximum separation between
quasienergies, i.e., the peaks of the spectrum. We have labeled
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FIG. 1. Top: Quasienergy spectrum for the two-level Hamiltonian
of Eq. (1) as a function of A/w. The boxed numbers n = 1,2, ...
label the points of the spectrum in which the quasienergy separation
is locally maximal. On top, we plot the analytical expression (4).
Bottom: Nondecay probability Pyp at time Tr, defined by Eq. (3),
calculated by numerical simulations of the system prepared in the
initial state |0), as a function of A/w. Near the degeneracies, where
Tr diverges, results are not displayed. In all cases, the resonant case
(i.e., w = A) is studied.

these points by n = 1,2, ... in the figure. To analyze this
behavior in more detail, we consider the time evolution of
Py p(t) for different values of the driving amplitude. Some
representative numerical results are shown in Fig. 2, where it
can be seen that Py p shows a ladder-type structure, decreasing
through a series of steps, in each of which the probability
oscillates rapidly around a constant mean value. Moreover, as
n grows, the frequency of these oscillations increases, while
the corresponding amplitude decreases. These steps occur
whenever the field &(¢) reaches a maximum or a minimum, and
then their amount can be estimated by the ratio 2w/ 2, with
Q =2x/Tr. We point out that the occurrence of stepwise
population inversion has been reported previously in this
model [6,17], and can be accounted for using the transfer
matrix approach in the limit of large amplitudes (A/w > 1).
Here, we are interested in analyzing the particular conditions
under which this behavior takes place, especially because when
A is set outside the peaks, the rapid oscillations still take place,
but the stairs become worse defined, and the probability ladder
may not necessarily be decreasing at all times, as illustrated
in Fig. 2(b).

III. MAXIMUM POPULATION TRANSFER: BLOCH
SPHERE MODEL AND ANALYTICAL SOLUTION

The singular behavior shown by the dynamics at the extrema
of the quasienergy spectrum admits a (deeper) analytical
explanation. Hamiltonian H, in Eq. (2) can be regarded as
equivalent to the interaction of a spin-1/2 particle with a
unit intensity magnetic field B(¢) rotating periodically but
nonuniformly in the x-y plane, such that the instantaneous
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FIG. 2. (Color online) Time evolution of the nondecay proba-
bility for the system starting in state |0), in the resonant (w = A)
regime. (a) Amplitudes corresponding to peaks n =2,3,5,6.
(b) Left: Amplitude corresponding to n =4. Right: A =4.5w,
between n = 2 and n = 3. Thick lines show the results given by
numerical simulations, while the black dashed curve is given by the
analytical solution (see text for details). For comparison, we show
the solution predicted in the high frequency regime (solid light gray
line), and a cosine function with the frequency of the driving field, »
(dashed light gray line). (c) Time evolution of the complete state of
the system, depicted in Bloch sphere, for the cases shown in (b). The
analytical solution is not shown for the case A = 4.5w, for clarity.

Larmor frequency is A. The components of this field can be
expanded in Fourier series

B (t) =cos(y,) = Jo(v) +2 Z Jo, (v) cos 2nwt) (®))

n=I

By(t) = sin(y:) =2 Joy_1 (v)sin[2n — Dot],  (6)

n=1

where v = 2A /w. If considered separately, the time integrals
of both components give the accumulated phase throughout
the evolution. As shown in Fig. 3, the contribution y,(¢) =
fot B..(s)ds shows the ladder structure found previously, as the
result of integrating a constant term added to an oscillating
series. On the other hand, integrating B,(¢) shows that the
leading term vanishes when J;(2A/w) = 0, resulting in a
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FIG. 3. Top: Plots of function §(¢) defined by Eq. (7), over
one period of the driving field, for different values of amplitude
corresponding to n = 2,3,4. In dashed lines a cosine function with
the frequency of the driving field w is shown. Bottom: Plot of the
time-dependent phases y,(¢) and y,(¢), which appear in the analytical
solution U(t) proposed for the evolution operator. Also shown is
B, (t) = y.(t). Note that the left axis labels correspond only to y, (),
the remaining functions being properly normalized for comparison.

small phase contribution of the whole series. Also notice
that, because of the relation Jj(x) = —J;(x), the zeros of
Ji match the extrema of Jy, also giving the position of the
spectrum peaks mentioned above, as long as approximation (4)
holds. In this situation, U(¢) is well approximated by U,(t) =
exp[—1y:(1)0y] = exp(—L[A't + 8(1)]o, ) with

A > JnQAje) o Qnot), (7)
n

8(1) = —
w

n

which is T periodic and can be seen to vanish in the limit
A/w — 0, as expected.

Plots of §(¢) for different values of n are displayed in
Fig. 3. This model approximates very well the population
dynamics when the field parameters are set at the extrema of
the quasienergy spectrum. A representative example is shown
in Fig. 2. In this case the full evolution operator becomes

U =U,U; = exp[—iy(t)o; /2] exp [—iy:()ox /2], (8)

and the particular time dependence of y, and y, over one
period of the driving field (see Fig. 3) allows us to rationalize
the resulting dynamics, as follows. Let us consider a partition
of the driving period in six equal intervals, each one of
length 7/6. Then y,(¢) and y,(t) can be approximated as a
sequence of linear and constant pieces, both showing opposite
behaviors during the interval. That is, from t =7 /6 to t =
2T /6, y, is almost constant and y, increases with a positive
slope; the resulting U(¢) being then well approximated by
an x rotation in Bloch sphere. From ¢ = 27/6 to t =3T/6
(and also in the following interval) y, shows low-amplitude
oscillations around a steady value, while y, decreases in
time almost linearly; U(¢) will then produce rapid rotations
around the z axis rendering nearly constant populations.
Similarly, we can continue with the rest of the intervals in
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FIG. 4. Contour plot representation in the configuration space (R,0) for the following functions of the LiNC/LiCN isomerizing system:
(a) Potential energy surface V(R,0) (contours every 1000 cm~! starting from zero). (b) Dipole moment component parallel to the N-C bond
(contours every 0.25 a.u. starting from zero, dashed lines correspond to negative values). (c) Same as (b) for the perpendicular component. The
minimum energy path connecting the isomer wells has been superimposed as a gray thick dashed line in the three plots.

the period. Finally, note that this discussion also accounts for
the phenomenon of optimal population transfer at these points,
shown in Fig. 1. Using this model, a simple calculation gives
Pyp(Tr) = sin?[8(Tr)/2], which is numerically seen never
exceeding 1072,

IV. AN EXAMPLE: CONTROL OF
ISOMERIZATION REACTIONS

Let us discuss next the application of our results in a
molecular control problem [18]. For this purpose, we consider
the LiNC/LiCN molecular system that has been extensively
studied in connection with the theoretical issue of quantum
chaos [19], and also in the simulation of the LINC=LiCN
isomerization reaction [20] in solution, where it was proven
to provide the first unambiguous example of the elusive
Kramers turnover [21]. In general, isomerization reactions
have generated a lot interest from the theoretical side [20]
and also for their practical importance in many relevant
chemical processes, especially of biological interest [22-25].
For example, the control of the HCN isomerization was
thoroughly studied in Refs. [26-28], and the importance of
intermediate states with configurations far from the usual ones
discussed.

A. LiNC/LiCN molecular system

The LiNC/LiCN isomerizing system presents two stable
isomers at the linear configurations: Li-N-C and Li-C-N, which
are separated by a relatively modest energy barrier of only
0.0157376 a.u. The C and N atoms are strongly bounded
by a triple covalent bond, while the Li is attached to the
CN moiety by mostly ionic forces, due to the large charge
separation existing between them. For these reasons, the CN
vibrational mode effectively decouples from the other degrees
of freedom of the molecule, and it can be considered frozen
at its equilibrium value, r, = 2.186. On the other hand, the
relative position of Li with respect to the center of mass of
the CN is much more flexible. In particular the bending along
the angular coordinate is very floppy, and the corresponding
vibration performs very large amplitude motions even at
moderate values of the excitation energy. Accordingly, the

vibrations of the whole system can be adequately described
by the following two degrees of freedom. Using scattering or
Jacobi coordinates (R,r,0), where R is the distance from the
Li atom to the center of mass of the CN fragment, r the C-N
distance, and 6 the angle formed by these two vectors, the
corresponding classical (J = 0) Hamiltonian is given by

P2 1 1
H= + = .
2uricen 2 \ MLi—cNR

1
+ MCNV2> P} + V(R,0),
(©))

where P and P, are the associate conjugate momenta, and
the corresponding reduced masses are given by uri_cn =
myimen/(myi + men) = 10072 and  pen = memn/men =
11780.

Note that we assume that the isomerization process is fast
compared with the rotation of the molecule. The potential
interaction, V(R,6), is given by a 10-terms expansion in
Legendre polynomials,

9
V(R.0) = Z v, (R)P;.(cos 0), (10)
A=0
where the coefficients, v, (R), are combinations of long and
short-term interactions whose actual expressions have been
taken from the literature [29]. This potential, which is shown
in Fig. 4(a) as a contour plot, has a global minimum at (R,6) =
(4.349,7r), a relative minimum at (R,0) = (4.795,0), and a
saddle point at (R,0) = (4.221,0.2927). The two minima
correspond to the stable isomers at the linear configurations,
LiNC and LiCN, respectively. The LiNC configuration, 6 = m,
is more stable than that for LiCN, § = (0. The minimum
energy path connecting the two isomers has also been plotted
superimposed in the figure with dashed line.

The LiCN molecule is a polar molecule, i.e., it has a
permanent dipole moment, so that in the presence of an electric
field, £, an additional potential energy term appears, leading
to the following effective Hamiltonian function

H = Hijen — d(R.0) - €, (11)

where c_i(R,G) is the dipole moment of the LiNC/LiCN
molecular system. For the dipole moment, we have taken
from the literature the ab initio calculations fitted to an
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FIG. 5. Top: (main) energy spectrum of the LiNC/LiCN molec-
ular system as a function of the electric field intensity £. (a)
Schematic diagram of the LiCN molecule, including the set of
coordinates (R,6) used. (b) Enlarged view of the squared zone of
the spectrum, showing the AC considered in the control strategy. At
both sides, density plots of the wave functions far from the AC, which
represent excited isomerized states. The axis ranges are 0 < 8 < 180°
and 3 < R < 5.5 a.u. Bottom: numerically simulated population
evolution, starting in state |1) and setting w = Ay and A =
(1.23 x 107%)A. Full black lines show the result predicted by the
two-level analytical solution (8) applied to this system.

analytic expansion in associated Legendre functions of Brocks
et al. [13]. The corresponding components parallel and
perpendicular to the N-C bond are shown in Figs. 4(b) and 4(c),
respectively.

B. Achieving isomerization via a DC+AC field

In order to design an effective control strategy, we consider
the electric field to be parallel to the C— N bond and
compute the vibrational level spectrum as a function of
the (static) electric field intensity &, as previously proposed
in Refs. [14,30]. In order to do so, we used the discrete
variable representation—distributed Gaussian basis (DVR-
DGB) method introduced in Ref. [31]. Results are shown
in Fig. 5. As a rule of thumb, positive-slope energy lines
correspond to LiNC states (that is, those localized in the
6 = 180° well), and the negative-slope lines to LiCN states
(6 ~ 0). Further details on the structure of this spectrum can
be found on Refs. [32,33].

A careful analysis of the spectrum shows that most ACs in
the low-energy region are very narrow and thus correspond to
interactions too weak to be useful in the control process. How-
ever, there is an AC centered at £ = £ = 2.39 x 1073 a.u,,
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FIG. 6. (Color online) Quasienergy spectrum for the LINC/LiCN
molecular system, focused in the energy range of the avoided crossing
under study (see Fig. 5). The values of driving field frequency used
in each case are: (a) w = Ay, (b) w = 20Ay, (¢) @ = 30A .

with a spectral gap of Ay = 0.15 cm™!, which seems suitable
for our purposes. Indeed, far for from the AC, the involved
eigenstates, termed |LiNC) and |LiCN), show localization
in opposite wells [see Fig. 5(b)] as needed in the control
process. We thus analyze the use of an electric field of the
form: £(t) = &y + Acos(wt).

The main feature to be emphasized here is that the results
drawn from usual high driving frequency regime could not
be applied in this case. This is because the quasienergy
spectrum is a function of the ratio A/w, which means that
high values of w would then imply the use of large amplitudes.
Note that, in such case, the control parameter (i.e., £ in our
case) would reach zones of the energy spectrum where more
levels are involved in an effective interaction. This would
invalidate the two-level approximation in a many level system
showing multiple ACs, like ours. This can be clearly seen
in Fig. 6, where we show the quasienergy spectrum of our
molecular system as a function of A’/w [34], for different
values of driving frequency w. Note that only the region of
the spectrum corresponding to the marked AC in Fig. 4(b) of
the main text is displayed here. As can be seen, the ribbon
structure typical of the kind of system considered in this
work becomes clearly distorted as the frequency increases.
Therefore, we propose to work in the intermediate-frequency
regime discussed before, so that the main results of the previous
sections become relevant for this problem. Actually, setting @
equal to A, make expressions (1) to (8) straightforwardly
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applicable. As an illustration, we show in the bottom panel of
Fig. 5 the evolution obtained starting from state |LiNC) [35]
for A = (1.23 x 1072)A (corresponding to n = 4). In terms
of control efficiency and suitability, we point out that the total
control time is approximately 2.3 x 2 /Ay =~ 0.51 ps, which
is well below the 400 ps reported in Ref. [14]. Nevertheless, it
should be noted that this protocol would require fine tuning of
the control parameters, similarly to more elemental strategies
(such as applying a single 7 pulse). We remark that the results
predicted by the analytical model proposed in Sec. IV are
in full agreement with the numerical results, as can be seen
in Fig. 5.

V. FINAL REMARKS

In summary, we have shown the existence of a set of
special points in the quasienergy spectrum of a periodically
driven TLS, where the evolution of the populations takes place
with maximum probability transfer. These points correspond
to the maxima and minima in the typical ribbon structure
exhibited by the spectrum, localized between the degeneracies
predicted by the occurrence of CDT. We have also shown that
for these particular combinations of the driving parameters
the full evolution operator for the system can be well
approximated by a very simple analytical expression, which
reveals that the system evolves in a Bloch sphere following a
sequence of rotations around the x and z axes. This behavior
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reflects in the appearance of a series of steps in the time
evolution of the populations, whose average takes the form
of a decreasing ladder, a behavior that has been reported in
previous works on this model [6,17]. It should be noted that
these results correspond to the intermediate-frequency regime
(w >~ A) where the RWA does not apply. Finally, we have
made use of these conclusions to study the isomerization
process induced by an oscillating electric field applied to
a triatomic molecule. Using this realistic model, we have
shown that the regime described in this paper is particularly
relevant in many-level systems showing multiple ACs, where
the use of large-amplitude driving fields would make the
simple two-level approximation invalid. We also believe that
the results shown in this paper could be of great interest to the
vast ongoing research on driven superconducting qubits [36],
usually modeled also by Hamiltonian (1).
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