51,961 research outputs found

    Inclusive and effective bulk viscosities in the hadron gas

    Full text link
    We estimate the temperature dependence of the bulk viscosity in a relativistic hadron gas. Employing the Green-Kubo formalism in the SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) transport approach, we study different hadronic systems in increasing order of complexity. We analyze the (in)validity of the single exponential relaxation ansatz for the bulk-channel correlation function and the strong influence of the resonances and their lifetimes. We discuss the difference between the inclusive bulk viscosity of an equilibrated, long-lived system, and the effective bulk viscosity of a short-lived mixture like the hadronic phase of relativistic heavy-ion collisions, where the processes whose inverse relaxation rate are larger than the fireball duration are excluded from the analysis. This clarifies the differences between previous approaches which computed the bulk viscosity including/excluding the very slow processes in the hadron gas. We compare our final results with previous hadron gas calculations and confirm a decreasing trend of the inclusive bulk viscosity over entropy density as temperature increases, whereas the effective bulk viscosity to entropy ratio, while being lower than the inclusive one, shows no strong dependence to temperature.Comment: 23 pages, 13 figure

    One hundred angstrom niobium wire

    Get PDF
    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing

    The role of angular momentum in the construction of electromagnetic multipolar fields

    Get PDF
    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions originating from different derivations can be difficult to compare. Some of the derivations of the multipolar solutions do not explicitly show their relation to the angular momentum operators, thus hiding important properties of these solutions. In this article, the relation between two of the most common derivations of this set of solutions is explicitly shown and their relation to the angular momentum operators is exposed.Comment: 13 pages, 2 figure

    Reexamining Black-Body Shifts for Hydrogenlike Ions

    Get PDF
    We investigate black-body induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure and Lamb-shift induced black-body shifts are found to increase with the square of the nuclear charge number, whereas black-body shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investigate the decay width acquired by the ground state of atomic hydrogen, due to interaction with black-body photons. The corresponding width is due to an instability against excitation to higher excited atomic levels, and due to black-body induced ionization. These effects limit the lifetime of even the most fundamental, a priori absolutely stable, "asymptotic" state of atomic theory, namely the ground state of atomic hydrogen.Comment: 11 pages; LaTe

    Covariant Helicity-Coupling Amplitudes: A New Formulation

    Full text link
    We have worked out covariant amplitudes for any two-body decay of a resonance with an arbitrary non-zero mass, which involves arbitrary integer spins in the initial and the final states. One key new ingredient for this work is the application of the total intrinsic spin operator S⃗\vec S which is given directly in terms of the generators of the Poincar\'e group. Using the results of this study, we show how to explore the Lorentz factors which appear naturally, if the momentum-space wave functions are used to form the covariant decay amplitudes. We have devised a method of constructing our covariant decay amplitudes, such that they lead to the Zemach amplitudes when the Lorentz factors are set one

    Teleological Essentialism

    Get PDF
    Placeholder essentialism is the view that there is a causal essence that holds category members together, though we may not know what the essence is. Sometimes the placeholder can be filled in by scientific essences, such as when we acquire scientific knowledge that the atomic weight of gold is 79. We challenge the view that placeholders are elaborated by scientific essences. On our view, if placeholders are elaborated, they are elaborated Aristotelian essences, a telos. Utilizing the same kinds of experiments used by traditional essentialists—involving superficial change (study 1), transformation of insides (study 2), acquired traits (study 3) and inferences about offspring (study 4)—we find support for the view that essences are elaborated by a telos. And we find evidence (study 5) that teleological essences may generate category judgments
    • …
    corecore