132 research outputs found

    Compassionate faces: Evidence for distinctive facial expressions associated with specific prosocial motivations

    Get PDF
    Compassion is a complex cognitive, emotional and behavioural process that has important real-world consequences for the self and others. Considering this, it is important to understand how compassion is communicated. The current research investigated the expression and perception of compassion via the face. We generated exemplar images of two compassionate facial expressions induced from two mental imagery tasks with different compassionate motivations (Study 1). Our kind- and empathic compassion faces were perceived differently and the empathic-compassion expression was perceived as best depicting the general definition of compassion (Study 2). Our two composite faces differed in their perceived happiness, kindness, sadness, fear and concern, which speak to their underling motivation and emotional resonance. Finally, both faces were accurately discriminated when presented along a compassion continuum (Study 3). Our results demonstrate two perceptually and functionally distinct facial expressions of compassion, with potentially different consequences for the suffering of others.CRB, PG, JAK and CJF were supported (MR/J009210/1) by the UK Medical Research Council (https://mrc.ukri.org/). JSL was supported by a grant (PP00P1_163758/1) from the Swiss National Science Foundation (www.snf.ch). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Configural and featural processing in humans with congenital prosopagnosia.

    Get PDF
    Prosopagnosia describes the failure to recognize faces, a deficiency that can be devastating in social interactions. Cases of acquired prosopagnosia have often been described over the last century. In recent years, more and more cases of congenital prosopagnosia (CP) have been reported. In the present study we tried to determine possible cognitive characteristics of this impairment. We used scrambled and blurred images of faces, houses, and sugar bowls to separate featural processing strategies from configural processing strategies. This served to investigate whether congenital prosopagnosia results from process-specific deficiencies, or whether it is a face-specific impairment. Using a delayed matching paradigm, 6 individuals with CP and 6 matched healthy controls indicated whether an intact test stimulus was the same identity as a previously presented scrambled or blurred cue stimulus. Analyses of d´ values indicated that congenital prosopagnosia is a face-specific deficit, but that this shortcoming is particularly pronounced for processing configural facial information

    Severe fetal growth restriction at 26-32 weeks: key messages from the TRUFFLE study.

    Get PDF
    The Trial of Randomized Umbilical and Fetal Flow in Europe (TRUFFLE) was a prospective, multicenter, unblinded, randomized trial that ran between 1 January 2005 and 1 October 2010 in 20 European centers1. It studied singleton pregnancies at 26–32weeks of gestation with a diagnosis of fetal growth restriction (FGR), defined as abdominal circumference95th percentile). In order to assess whether changes in the fetal ductus venosus (DV) Doppler waveform or short-term variation (STV) on cardiotocography (CTG) should be used as a trigger for delivery in these pregnancies, the 503 included women were randomly allocated to one of three ‘timing-of-delivery’ plans (with 1 : 1 : 1 randomization).</p

    Reduced fetal growth velocity and weight loss are associated with adverse perinatal outcome in fetuses at risk of growth restriction

    Get PDF
    BACKGROUND: Although fetal size is associated with adverse perinatal outcome, the relationship between fetal growth velocity and adverse perinatal outcome is unclear.OBJECTIVE: This study aimed to evaluate the relationship between fetal growth velocity and signs of cerebral blood flow redistribution, and their association with birthweight and adverse perinatal outcome.STUDY DESIGN: This study was a secondary analysis of the TRUFFLE 2 multicenter observational prospective feasibility study of fetuses at risk of fetal growth restriction between 32(+0) and 36(+6) weeks of gestation (n=856), evaluated by ultrasound biometry and umbilical and middle cerebral artery Doppler. Individual fetal growth velocity was calculated from the difference of birthweight and estimated fetal weight at 3, 2, and 1 week before delivery, and by linear regression of all available estimated fetal weight measurements. Fetal estimated weight and birthweight were expressed as absolute value and as multiple of the median for statistical calculation. The coefficients of the individual linear regression of estimated fetal weight measurements (growth velocity; g/wk) were plotted against the last umbilical-cerebral ratio with subclassification for perinatal outcome. The association of these measurements with adverse perinatal outcome was assessed. The adverse perinatal outcome was a composite of abnormal condition at birth or major neonatal morbidity.RESULTS: Adverse perinatal outcome was more frequent among fetuses whose antenatal growth was < 100 g/wk, irrespective of signs of cerebral blood flow redistribution. Infants with birthweight < 0.65 multiple of the median were enrolled earlier, had the lowest fetal growth velocity, higher umbilical-cerebral ratio, and were more likely to have adverse perinatal outcome. A decreasing fetal growth velocity was observed in 163 (19%) women in whom the estimated fetal weight multiple of the median regression coefficient was <-0.025, and who had higher umbilical-cerebral ratio values and more frequent adverse perinatal outcome; 67 (41%; 8% of total group) of these women had negative growth velocity. Estimated fetal weight and umbilical-cerebral ratio at admission and fetal growth velocity combined by logistic regression had a higher association with adverse perinatal outcome than any of those parameters separately (relative risk, 3.3; 95% confidence interval, 2.3-4.8). CONCLUSION: In fetuses at risk of late preterm fetal growth restriction, reduced growth velocity is associated with an increased risk of adverse perinatal outcome, irrespective of signs of cerebral blood flow redistribution. Some fetuses showed negative growth velocity, suggesting catabolic metabolism

    Do differences in diagnostic criteria for late fetal growth restriction matter?

    Get PDF
    Background: Criteria for diagnosis of fetal growth restriction differ widely according to national and international guidelines, and further heterogeneity arises from the use of different biometric and Doppler reference charts, making the diagnosis of fetal growth restriction highly variable. Objective: This study aimed to compare fetal growth restriction definitions between Delphi consensus and Society for Maternal-Fetal Medicine definitions, using different standards/charts for fetal biometry and different reference ranges for Doppler velocimetry parameters. Study design: From the TRUFFLE 2 feasibility study (856 women with singleton pregnancy at 32+0 to 36+6 weeks of gestation and at risk of fetal growth restriction), we selected 564 women with available mid-pregnancy biometry. For the comparison, we used standards/charts for estimated fetal weight and abdominal circumference from Hadlock, INTERGROWTH-21st, and GROW and Chitty. Percentiles for umbilical artery pulsatility index and its ratios with middle cerebral artery pulsatility index were calculated using Arduini and Ebbing reference charts. Sensitivity and specificity for low birthweight and adverse perinatal outcome were evaluated. Results: Different combinations of definitions and reference charts identified substantially different proportions of fetuses within our population as having fetal growth restriction, varying from 38% (with Delphi consensus definition, INTERGROWTH-21st biometric standards, and Arduini Doppler reference ranges) to 93% (with Society for Maternal-Fetal Medicine definition and Hadlock biometric standards). None of the different combinations tested appeared effective, with relative risk for birthweight <10th percentile between 1.4 and 2.1. Birthweight <10th percentile was observed most frequently when selection was made with the GROW/Chitty charts, slightly less with the Hadlock standard, and least frequently with the INTERGROWTH-21st standard. Using the Ebbing Doppler reference ranges resulted in a far higher proportion identified as having fetal growth restriction compared with the Arduini Doppler reference ranges, whereas Delphi consensus definition with Ebbing Doppler reference ranges produced similar results to those of the Society for Maternal-Fetal Medicine definition. Application of Delphi consensus definition with Arduini Doppler reference ranges was significantly associated with adverse perinatal outcome, with any biometric standards/charts. The Society for Maternal-Fetal Medicine definition could not accurately detect adverse perinatal outcome irrespective of estimated fetal weight standard/chart used. Conclusion: Different combinations of fetal growth restriction definitions, biometry standards/charts, and Doppler reference ranges identify different proportions of fetuses with fetal growth restriction. The difference in adverse perinatal outcome may be modest, but can have a significant impact in terms of rate of intervention

    The challenges for women's health in sub-Saharan Africa: Lessons learned from an integrative multistakeholder workshop in Gabon.

    Get PDF
    The sub-Saharan African (SSA) region is home to more than 230 million females of reproductive age who face multiple intersecting health, social, gender and economic challenges [1]. Neglected tropical diseases (NTDs) are a group of chronic disabling, almost exclusively communicable diseases affecting the poorest of the poor, especially in Africa, which alone bears about 40% of the global burden of NTDs [2- 4]. While both men and women are impacted, biological and sociocultural biases mean that NTDs disproportionately affect women and girls [5]. In recent decades, there has been a global shift from communicable toward non-communicable diseases (NCDs), which cause almost 32 million deaths in low-and lower- middle- income countries (LMIC) [6]. It is expected that by 2030, 85% of NCD-related deaths among women will occur in LMICs, including many countries of SSA region [7]. For women older than 50, NCDs are the leading cause of both death and disability-adjusted life years (DALYs) [8]. Important disparities persist in access to maternal and reproductive health services both within and between countries in SSA [9]; it is estimated that almost half of the women in SSA do not have access to essential health care during pregnancy and childbirth. In 2017, SSA accounted for roughly two-thirds of all maternal deaths in the world [10]. Hence, it is evident that many, if not most, women and girls in SSA carry a triple burden of vulnerability to NTDs, NCDs and poor reproductive health outcomes. Here, we report on the outcomes of an integrative, multistakeholder workshop held in Gabon, Central Africa, to help develop a framework for synergistic, sustainable and gender- and context-appropriate interventions to manage the NTD-NCD complex and additionally reproductive health

    Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial

    Get PDF
    BACKGROUND: Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after myocardial infarction in adult cardiology. Application of this method to fetal medicine has established significantly better identification than with short-term variation by computerized cardiotocography of growth-restricted fetuses. OBJECTIVE: The aim of this study was to determine the longitudinal progression of phase-rectified signal averaging indices in severely growth-restricted human fetuses and the prognostic accuracy of the technique in relation to perinatal and neurologic outcome. STUDY DESIGN: Raw data from cardiotocography monitoring of 279 human fetuses were obtained from 8 centers that took part in the multicenter European “TRUFFLE” trial on optimal timing of delivery in fetal growth restriction. Average acceleration and deceleration capacities were calculated by phase-rectified signal averaging to establish progression from 5 days to 1 day before delivery and were compared with short-term variation progression. The receiver operating characteristic curves of average acceleration and deceleration capacities and short-term variation were calculated and compared between techniques for short- and intermediate-term outcome. RESULTS: Average acceleration and deceleration capacities and short-term variation showed a progressive decrease in their diagnostic indices of fetal health from the first examination 5 days before delivery to 1 day before delivery. However, this decrease was significant 3 days before delivery for average acceleration and deceleration capacities, but 2 days before delivery for short-term variation. Compared with analysis of changes in short-term variation, analysis of (delta) average acceleration and deceleration capacities better predicted values of Apgar scores <7 and antenatal death (area under the curve for prediction of antenatal death: delta average acceleration capacity, 0.62 [confidence interval, 0.19–1.0]; delta short-term variation, 0.54 [confidence interval, 0.13–0.97]; P=.006; area under the curve for prediction Apgar <7: average deceleration capacity <24 hours before delivery, 0.64 [confidence interval, 0.52–0.76]; short-term variation <24 hours before delivery, 0.53 [confidence interval, 0.40–0.65]; P=.015). Neither phase-rectified signal averaging indices nor short-term variation showed predictive power for developmental disability at 2 years of age (Bayley developmental quotient, <95 or <85). CONCLUSIONS: The phase-rectified signal averaging method seems to be at least as good as short-term variation to monitor progressive deterioration of severely growth-restricted fetuses. Our findings suggest that for short-term outcomes such as Apgar score, phase-rectified signal averaging indices could be an even better test than short-term variation. Overall, our findings confirm the possible value of prospective trials based on phase-rectified signal averaging indices of autonomic nervous system of severely growth-restricted fetuses

    Perinatal and 2-year neurodevelopmental outcome in late preterm fetal compromise: The TRUFFLE 2 randomised trial protocol

    Get PDF
    Introduction Following the detection of fetal growth restriction, there is no consensus about the criteria that should trigger delivery in the late preterm period. The consequences of inappropriate early or late delivery are potentially important yet practice varies widely around the world, with abnormal findings from fetal heart rate monitoring invariably leading to delivery. Indices derived from fetal cerebral Doppler examination may guide such decisions although there are few studies in this area. We propose a randomised, controlled trial to establish the optimum method of timing delivery between 32 weeks and 36 weeks 6 days of gestation. We hypothesise that delivery on evidence of cerebral blood flow redistribution reduces a composite of perinatal poor outcome, death and short-term hypoxia-related morbidity, with no worsening of neurodevelopmental outcome at 2 years. Methods and analysis Women with non-anomalous singleton pregnancies 32+0 to 36+6 weeks of gestation in whom the estimated fetal weight or abdominal circumference is &lt;10th percentile or has decreased by 50 percentiles since 18-32 weeks will be included for observational data collection. Participants will be randomised if cerebral blood flow redistribution is identified, based on umbilical to middle cerebral artery pulsatility index ratio values. Computerised cardiotocography (cCTG) must show normal fetal heart rate short term variation (≥4.5 msec) and absence of decelerations at randomisation. Randomisation will be 1:1 to immediate delivery or delayed delivery (based on cCTG abnormalities or other worsening fetal condition). The primary outcome is poor condition at birth and/or fetal or neonatal death and/or major neonatal morbidity, the secondary non-inferiority outcome is 2-year infant general health and neurodevelopmental outcome based on the Parent Report of Children's Abilities-Revised questionnaire. Ethics and dissemination The Study Coordination Centre has obtained approval from London-Riverside Research Ethics Committee (REC) and Health Regulatory Authority (HRA). Publication will be in line with NIHR Open Access policy. Trial registration number Main sponsor: Imperial College London, Reference: 19QC5491. Funders: NIHR HTA, Reference: 127 976. Study coordination centre: Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS with Centre for Trials Research, College of Biomedical &amp; Life Sciences, Cardiff University. IRAS Project ID: 266 400. REC reference: 20/LO/0031. ISRCTN registry: 76 016 200

    Human Centric Facial Expression Recognition

    Get PDF
    Facial expression recognition (FER) is an area of active research, both in computer science and in behavioural science. Across these domains there is evidence to suggest that humans and machines find it easier to recognise certain emotions, for example happiness, in comparison to others. Recent behavioural studies have explored human perceptions of emotion further, by evaluating the relative contribution of features in the face when evaluating human sensitivity to emotion. It has been identified that certain facial regions have more salient features for certain expressions of emotion, especially when emotions are subtle in nature. For example, it is easier to detect fearful expressions when the eyes are expressive. Using this observation as a starting point for analysis, we similarly examine the effectiveness with which knowledge of facial feature saliency may be integrated into current approaches to automated FER. Specifically, we compare and evaluate the accuracy of ‘full-face’ versus upper and lower facial area convolutional neural network (CNN) modelling for emotion recognition in static images, and propose a human centric CNN hierarchy which uses regional image inputs to leverage current understanding of how humans recognise emotions across the face. Evaluations using the CK+ dataset demonstrate that our hierarchy can enhance classification accuracy in comparison to individual CNN architectures, achieving overall true positive classification in 93.3% of cases
    corecore