1,505 research outputs found

    Single chain properties of polyelectrolytes in poor solvent

    Full text link
    Using molecular dynamics simulations we study the behavior of a dilute solution of strongly charged polyelectrolytes in poor solvents, where we take counterions explicitly into account. We focus on the chain conformational properties under conditions where chain-chain interactions can be neglected, but the counterion concentration remains finite. We investigate the conformations with regard to the parameters chain length, Coulomb interaction strength, and solvent quality, and explore in which regime the competition between short range hydrophobic interactions and long range Coulomb interactions leads to pearl-necklace like structures. We observe that large number and size fluctuations in the pearls and strings lead to only small direct signatures in experimental observables like the single chain form factor. Furthermore we do not observe the predicted first order collapse of the necklace into a globular structure when counterion condensation sets in. We will also show that the pearl-necklace regime is rather small for strongly charged polyelectrolytes at finite densities. Even small changes in the charge fraction of the chain can have a large impact on the conformation due to the delicate interplay between counterion distribution and chain conformation.Comment: 20 pages, 27 figures, needs jpc.sty (included), to appear in Jour. Phys. Chem

    End-effects of strongly charged polyelectrolytes - a molecular dynamics study

    Full text link
    We investigate end-effects in the ion distribution around strongly charged, flexible polyelectrolytes with a quenched charge distribution by molecular dynamics simulations of dilute polyelectrolyte solutions. We take the counterions explicitly into account and calculate the full Coulomb interaction via an Ewald summation method. We find that the free counterions of the solution are distributed in such a way that a fraction of the chain charges is effectively neutralized. This in turn leads to an effective charge distribution which is similar to those found for weakly charged titrating polyelectrolytes that have an annealed charge distribution. The delicate interplay between the electrostatic interactions, the chain conformation and the counterion distribution is studied in detail as a function of different system parameters such as the chain length Nm, the charge fraction f, the charged particle density rho, the ionic strength and the solvent quality. Comparisons are made with predictions from a scaling theory.Comment: 20 pages, 10 figures. J. Chem. Phys, to appear June 200

    Structure of Polyelectrolytes in Poor Solvent

    Full text link
    We present simulations on charged polymers in poor solvent. First we investigate in detail the dilute concentration range with and without imposed extension constraints. The resulting necklace polymer conformations are analyzed in detail. We find strong fluctuations in the number of pearls and their sizes leading only to small signatures in the form factor and the force-extension relation. The scaling of the peak in the structure factor with the monomer density shows a pertinent different behavior from good solvent chains.Comment: 7 pages, 5 figures. submitted to EP

    Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium

    Full text link
    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates

    Application of nonpolar matrices for the analysis of low molecular weight nonpolar synthetic polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Get PDF
    AbstractThe application of nonpolar matrices for the analysis of low molecular weight nonpolar synthetic polymers using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is demonstrated. Anthracene, pyrene, and acenaphthene were utilized as nonpolar matrices for the analysis of polybutadiene, polyisoprene, and polystyrene samples of various average molecular weights ranging from about 700 to 5000. The standard MALDI-MS approach for the analysis of these types of polymers involves the use of conventional acidic matrices, such as all-trans-retinoic acid, with an additional cationization reagent. The nonpolar matrices used in this study are shown to be as equally effective as the conventional matrices. The uniform mixing of the nonpolar matrices and the nonpolar analytes enhances the MALDI-MS spectral reproducibility. Silver salts were found to be the best cationization reagents for all of the cases studied. Copper salts worked well for polystyrene, poorly for polyisoprene, and not at all for polybutadiene samples. These matrices should be useful for the characterization of hydrocarbon polymers and other analytes, such as modified polymers, which may potentially be sensitive to acidic matrices

    Physico-Chemical Differences Between Particle- and Molecule-Derived Toxicity: Can We Make Inherently Safe Nanoparticles?

    Get PDF
    The rapidly growing applications of nanotechnology require a detailed understanding of benefits and risks, particularly in toxicology. The present study reviews the physical and chemical differences between particles and molecules when interacting with living organisms. In contrast to classical chemicals, the mobility of nanoparticles is governed by agglomeration, a clustering process that changes the characteristic size of the nanomaterials during exposure, toxicity tests or in the environment. The current status of nanotoxicology highlights non-classical toxic interactions through catalytic processes inside living cells and the enhanced heavy metal transport into the cytosol through the 'Trojan horse mechanism'. The safety of nanoparticles in consumer goods is proposed to be rendered inherently safer by substituting the currently used persistent oxides through biodegradable materials

    Polyelectrolyte Bundles

    Full text link
    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.Comment: 10 pages, 8 figure

    Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior

    Get PDF
    We provide a comprehensive description of the defect tolerance of sodium-borosilicate glasses upon sharp contact loading. This is motivated by the key role which is taken by this particular glass system in a wide variety of applications, ranging from electronic substrates, display covers and substrates for biomedical imaging and sensing to, e.g., radioactive waste vitrification. The present report covers the mechanical properties of glasses in the Na2O–B2O3–SiO2 ternary over the broad range of compositions from pure SiO2 to binary sodium-borates, and crossing the regions of various commercially relevant specialty borosilicate glasses, such as the multi-component Duran-, Pyrex- and BK7-type compositions and typical soda-lime silicate glasses, which are also included in this study. In terms of structure, the considered glasses may be separated into two groups, that is, one series which contains only bridging oxygen atoms, and another series which is designed with an increasing number of non-bridging oxygen ions. Elastic moduli, Poisson ratio, hardness as well as creep and crack resistance were evaluated, as well as the contribution of densification to the overall amount of indentation deformation. Correlations between the mechanical properties and structural characteristics of near- and mid-range order are discussed, from which we obtain a mechanistic view at the molecular reactions which govern the overall deformation reaction and, ultimately, contact cracking

    Correlation length of hydrophobic polyelectrolyte solutions

    Full text link
    The combination of two techniques (Small Angle X-ray Scattering and Atomic Force Microscopy) has allowed us to measure in reciprocal and real space the correlation length ξ\xi of salt-free aqueous solutions of highly charged hydrophobic polyelectrolyte as a function of the polymer concentration CpC_p, charge fraction ff and chain length NN. Contrary to the classical behaviour of hydrophilic polyelectrolytes in the strong coupling limit, ξ\xi is strongly dependent on ff. In particular a continuous transition has been observed from ξ∼Cp−1/2\xi \sim C_p^{-1/2} to ξ∼Cp−1/3\xi\sim C_p^{-1/3} when ff decreased from 100% to 35%. We interpret this unusual behaviour as the consequence of the two features characterising the hydrophobic polyelectrolytes: the pearl necklace conformation of the chains and the anomalously strong reduction of the effective charge fraction.Comment: 7 pages, 5 figures, submitted to Europhysics Letter

    Multimodal data acquisition at SARS-CoV-2 drive through screening centers: Setup description and experiences in Saarland, Germany

    Get PDF
    SARS-CoV-2 drive through screening centers (DTSC) have been implemented worldwide as a fast and secure way of mass screening. We use DTSCs as a platform for the acquisition of multimodal datasets that are needed for the development of remote screening methods. Our acquisition setup consists of an array of thermal, infrared and RGB cameras as well as microphones and we apply methods from computer vision and computer audition for the contactless estimation of physiological parameters. We have recorded a multimodal dataset of DTSC participants in Germany for the development of remote screening methods and symptom identification. Acquisition in the early stages of a pandemic and in regions with high infection rates can facilitate and speed up the identification of infection specific symptoms and large-scale data acquisition at DTSC is possible without disturbing the flow of operation
    • …
    corecore