
L E T T E R

Multimodal data acquisition at SARS-CoV-2 drive through
screening centers: Setup description and experiences
in Saarland, Germany

Philipp Flotho | Mayur J. Bhamborae | Tobias Grün | Carlos Trenado |

David Thinnes | Dominik Limbach | Daniel J. Strauss*

Systems Neuroscience and
Neurotechnology Unit, Neurocenter,
Faculty of Medicine, Saarland University
and School of Engineering, htw saar,
Saarbrücken, Germany

*Correspondence
Daniel J. Strauss, Systems Neuroscience
and Neurotechnology Unit, Neurocenter,
Faculty of Medicine, Saarland University
and School of Engineering, htw saar,
Saarbrücken, Germany.
Email: daniel.strauss@uni-saarland.de

Abstract

SARS-CoV-2 drive through screening

centers (DTSC) have been implemented

worldwide as a fast and secure way of

mass screening. We use DTSCs as a plat-

form for the acquisition of multimodal

datasets that are needed for the develop-

ment of remote screening methods. Our

acquisition setup consists of an array of

thermal, infrared and RGB cameras as

well as microphones and we apply

methods from computer vision and computer audition for the contactless esti-

mation of physiological parameters. We have recorded a multimodal dataset of

DTSC participants in Germany for the development of remote screening

methods and symptom identification. Acquisition in the early stages of a pan-

demic and in regions with high infection rates can facilitate and speed up the

identification of infection specific symptoms and large-scale data acquisition at

DTSC is possible without disturbing the flow of operation.
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1 | INTRODUCTION

Research on digital technologies to combat the COVID-19
pandemic includes the computational analysis of video and
audio data [1–3]. Due to their contactless nature, such
methods are particularly promising and needed for mass

screening purposes [3] and besides fever, there are other
atypical and non-severe symptoms (e.g. [4–7]) which allow
for non-contact medical assessment. The value of such
screening systems would of course be directly related to the
achievable sensitivity and specificity for detecting SARS-
CoV-2 infections. However, it is challenging to acquire
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homogeneous data sets for the development and assessment
of such remote systems without interfering with medical
services due to the pressure of the ongoing pandemic.

For the rapid collection of samples for polymerase
chain reaction (PCR) based screening, drive-through
screening centers (DTSCs), for example, Kwon et al. [8],
are already in use in several countries. There are advan-
tages of DTSCs for the acquisition of contactless record-
ings of the patients: They simulate a scenario, where
contactless screening of infectious diseases might be
implemented 1 day, such as the entrance of employee
parking area. The exposure of equipment and personnel
to patients is minimized and at the same time the expo-
sure of healthy participants to contaminated air or equip-
ment is fully controlled and can be completely avoided as
the patients stay seated in their own car.

We propose an acquisition system along with a
processing pipeline for rapidly acquiring such data at
DTSC without disturbing their flow of medical operation
and present a multimodal dataset of DTSC users as well
as preliminary evaluations.

2 | MATERIALS AND METHODS

We recorded our dataset between May and July 2020 at
the SARS-CoV-2 DTSC located at the former fairground
area in Saarbrücken, State of Saarland, Germany. The
study was approved by the responsible ethics committee
(ethics commission at the Ärztekammer des Saarlandes,
ID No 90/20) and after a detailed explanation of the pro-
cedure, all included participants signed a consent form.
Admission to and recommendation for the tests was
given by the participants' general practitioner if a patient
had a potential SARS-CoV-2 infection based on the
Robert Koch Institute's guidelines [9]. The PCR-test
result for SARS-CoV-2 from the individual nose and
throat swap was accessible for us at the responsible pub-
lic health office. The recordings were done through an
opened window with the participants sitting in their car.
Our multimodal setup consisted of RGB, NIR, depth and
thermal cameras as well as microphones (see Figure 1).
We recorded at 120fps (face closeups, RGB), 50fps (ther-
mal camera), 30fps (NIR) and 10fps (high resolution
RGB, stereo) and used custom acquisition routines and
frame grabbers to minimize the user interaction with the
recording systems. The investigators followed the same
guidelines for the personal protective equipment (PPE) as
the physicians taking the swap samples. Participants
waiting for the experiment were regularly informed about
the estimated waiting period and had the option to quit
the experiment between two recordings, to reduce the
contamination with ambient sound during audio

recordings. The experiment began with a set of yes/no/
unknown questions with the goal to generate uniform
voice samples that can be compared between subjects.
These also provided additional medical history. The sec-
ond segment was a free speech sample, where the partici-
pants were asked to tell the circumstances that led to them
visiting the DTSC. Subsequently, we asked the participants
to briefly present their hands from both sides towards the
camera, to catch potential cues to skin rashes. In the final
segment, participants were asked to take 10 deep breaths
and to breathe normally for 30 seconds afterwards. The
entire study/data acquisition took around 6 minutes. A total
of 436 participants with signed consent form participated in
our study, aged 19–86 (mean age 45.6 ± 15.2, 215 males,
221 females, 7 participants did not provide their age).
Thirty-four subjects reported chronical or acute respiratory
diseases or symptoms (see Figure 3). Despite a relatively
high participation of 36% of the DTSC users in our study,
our data set contained only two subjects with SARS-CoV-2
positive PCR results from the swab tests at the DTSC, see
discussion.

3 | RESULTS

We have recorded a dataset up to 6 minutes per subject
with HFR or high-resolution multimodal cameras and
microphones. We applied already available procedures
from computer vision and computer audition for assess-
ment of the data quality. The evaluations and respective
methodology used as proof of concept are described
below. Figure 2 summarizes the results for each of these
modalities, in particular how the contactless physiologi-
cal parameters compare to gender and age specific norm
values and grouped them by a presence/absence of symp-
toms. Due to ethics / privacy conditions, evaluations on
the full dataset are limited to our local infrastructure.
However, we have recordings of individual participants
that agreed to have their recordings made publicly avail-
able and offer those for download on our project website.
The code for the calibration and reading of the demo data
can be found on our GitHub.*

3.1 | System calibration and camera
mapping

The camera setup was calibrated with a 4� 13 circular cali-
bration pattern glued to a cut-out metal plate. The pattern
was heated with two heating blankets prior to acquisition
and therefore was visible in the thermal, NIR, and RGB
cameras (see Figure 1B.1-B.3). Since the macro lens of the
high-speed camera required manual adjustment prior to
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each recording and had a drastically different field of view,
this camera was not calibrated into the system. We applied
pairwise stereo calibration with the goal of mapping from
the Kinect and from the stereo pair into the thermal cam-
era. For stereo-thermal calibration, the left camera (see
Figure 1, stereo II) was used as origin each and for kinect-
thermal, the kinect was the origin. The 4 k camera (stereo
II) was spatially downsampled to the resolution of the low
resolution right stereo camera (stereo I). Mapping into the
thermal camera was implemented via the Kinect intrinsic
matrix and the depth channel, as well as triangulation and
projection from the stereo cameras.

3.2 | Remote plethysmography

We applied the method of Wang et al. [10] for the
extraction of remote plethysmography (rPPG) signals
from skin segmented super-pixels of the HFR and 4 k
recordings and used custom scripts for peak detection
and analysis. The analysis shows that the mean heart
rate (MHR) decreases with age (see Figure 2A). Female

participants show slightly higher values in MHR and
lower values related to heart rate variability than male
participants. This agrees with results from experiments
with gold standard contact based sensors on large
sample sizes [11,12].

3.3 | Remote eye analysis

We precomputed landmarks for the HFR and 4 k
recordings using dlib [13]. On the eye, we analyzed the
average blinking rate which can be a marker for drows-
iness [14] and redness of the sclera as an indicator for
follicular conjunctivitis [15] (see Figure 2B). We calcu-
lated the eye-aspect-ratio (Eye-AR) [16] from the pre-
computed landmarks and applied custom algorithms to
detect / count peaks for blinking detection. We found a
significant difference in the blinking rate which was
larger for participants reporting itchy eyes as compared
to fever. We also extracted a region of interest around
the eye and applied segmentation (gray scale based) to
calculate the redness index (RI) from the sclera [15].

FIGURE 1 Schematic depiction of the flow at the SARS-CoV-2 DTSC (A) and of the multimodal acquisition system (B). Measurements

were done through the opened window of the car with RGB, NIR, depth and thermal cameras as well as microphones. We recorded from the

thermal camera at 50fps ((B), top center), the high framerate (HFR) camera with macro lens for face closeups at 120fps ((B), top right) and

the high resolution camera in a stereo setup at 10fps ((B), top left). The stereo cameras covered the same field of view as the thermal camera.

The camera setup was calibrated with a circular calibration pattern glued to a metal plate with pattern cut out as seen in the RGB (B.1), near

infrared (B.2), and thermal (B.3) image. Of the three possible lanes for the swab tests, the middle one was used during the time of our

measurements
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We found no significant difference of the RI between
those with fever vs. itchy eyes.

3.4 | Functional thermography

From the thermal recordings, we analyzed static temper-
atures from the orbital, periorbital, maxillary, and nose
region (see Figure 2C). Vanilla landmark detectors did
not perform consistently for all participants on the ther-
mal camera, so we developed a stack of pre-processing
methods such as image inversion and unsharp masking
to a set of 10 randomly sampled frames for each subject,
applied a facial landmark detector [17] to each of the
images with different pre-processing and averaged
the results per frame. Failed detections were manually
annotated.

For the two demo recordings (two different record-
ing days and system calibrations), we compared this
approach with projecting landmarks from the Kinect
NIR image via the Kinect depth channel as well as with
triangulation from landmarks on the stereo RGB
frames into the thermal camera frame. The root mean
square error (RMSE) between stereo and thermal was
2.4 and 5.3 pixels and between Kinect and thermal/ste-
reo a few magnitudes larger. The low performance of
the Kinect can partially be explained by outliers due to
missing depth values, which could be solved by depth
map filtering. Hence, the median error is much lower
with 2.7 and 4.6 for Kinect and thermal as compared to
1.8 and 2.5 for stereo and thermal. Due to the generally
low RMSE between stereo and thermal and good quali-
tative performance of the thermal detection approach,

we used our method in the thermal domain for the
static evaluations. This has the advantage that it does
not depend on the calibration of the recording day and
is easy to deploy.

Our results showed a significant difference in temper-
ature for subjects reporting fever vs. no fever in the max-
illary, periorbital and nose region.

3.5 | Computer audition

Schuller et al. argue how audio “in-the wild” recordings
under unconstrained conditions with various signal deg-
radations can already have value for COVID-19
computer audition [2]. With our platform, we get repro-
ducible quality audio recordings from uniform hardware
(see Figure 3D). For instance, using established speech
feature extraction schemes [18], the voice quality of our
data is sufficient to solve a gender classification task with
above 90% cross-validated accuracy of a support vector
machine.

4 | DISCUSSION

A major limitation of our study is the marginal number
of participants with positive PCR test result for SARS-
CoV-2. The reason for this was the generally very low
incidence rate in the study period in the region where the
DTSC was located. In fact, the positive rate was below
0.4% at the DTSC Saarbrücken in the respective period.
Thus, the specificity and sensitivity of the described
approach with respect to SARS-CoV-2 infections cannot

0
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no information

FIGURE 2 Counts of the symptoms reported by participants during the yes/no section of our experiment. Because every participant was

already admitted to the drive through screening centers (DTSC) based on the RKI recommendations regarding contact to infected persons

and symptoms, most of our participants showed different flu-like symptoms or symptoms of a common cold. Most common were fatigue

(306), followed by headache (268), cold (273), and sore throat (208). Evaluations had to exclude at most 10% of the measurements due to

various reasons linked to modality. 6 subjects did not want to remove their glasses, which aggravated temperature extraction around the

orbital and periorbital regions. We measured 5 symptom free subjects that did not participate in the swab test
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FIGURE 3 Results obtained in the reported evaluation period from the different modalities. rPPG (A) was used for the extraction of HR

and HRV. For remote optometry (B) we analyzed EYE-AR and sclera redness. For static temperatures from the face (C), we looked at four

points of interest. Manual assessment of our audio recordings (D) shows that 97.6% of our recordings had very good to acceptable sound

quality, while for the rest the voice was rated unintelligible
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be assessed. However, our proof of concept shows that a
remote data acquisition of SARS-CoV-2 infection related
symptoms at DTSCs is possible. Our experiences and
results enable the installation of similar approaches in
regions that do massive DTSC testing.

Additionally, we have recorded an unprecedented, mul-
timodal dataset with a high number of subjects that can be
used for the development and refinement of computer
vision methods. Many state-of-the-art computer vision stud-
ies with isolated modalities have to resort to smaller, pub-
licly available datasets: Considering the development of
algorithms for the detection and classification of micro-
expressions, Li et al. report between 80–210 subjects for
common micro-expression datasets with evoked micro-
expressions and they present a dataset with 20 subjects for
spontaneous micro-expressions, recorded at 100fps (RGB)
and 25fps (NIR) [19]. Davison et al record 32 subjects at
200fps for spontaneous micro-expressions [20]. Our dataset
contains recordings of 436 participants at 120fps (RGB),
50fps (thermal) and 30fps (NIR) over 6 minutes. While
some subjects moved out of frame during various parts for
the experiment for the HFR face close-up recordings, we
expect a similar percentage of successful recordings that
allow for micro-expression annotation as for our HR evalua-
tions (see Figure 2) and we can additionally report HFR
thermal recordings with wider field of view.

For a facial landmarking task in the context of func-
tional thermal imaging, datasets of around 2935 frames
from 90 subjects with full manual annotation can be con-
sidered among the state-of-the-art [21]. Our 436 record-
ings at 50 hz of up to 6 minutes potentially enable the
generation of a dataset with 7–8 million frames which
would be multiple orders of magnitudes larger. Our pre-
liminary results suggest the possibility of partial, auto-
matic annotation with either with an appropriate stack of
pre-processing methods and together with tracking
approaches or projection from the stereo or Kinect cam-
eras into thermal frame with any landmarking or detec-
tion algorithm could be used for a full annotation of the
dataset in the future. On top of that, the setup potentially
allows for multimodal mapping between NIR and ther-
mal domain using the depth channel of the kinect and
between RGB and thermal domain with the stereo setup
(e.g. compare Palmero et al [22]).

Computer vision algorithms have different requirements
for environmental parameters. In the context of rPPG
methods, Wang et al require illumination with constant
spectrum to reconstruct PPG signals from videos in talking
and static scenarios and of various skin types and then
achieve high signal to noise ratio of the reconstructed
spectograms [10]. The employed studio illumination in our
setup at the DTSC fulfills those requirements and allowed
us to record high-quality data for rPPG measurements.

The redundant camera setup allows for investigations of
optimal and minimal sensor configurations of similar
setups: With the minimal sensor configuration of one high
speed camera with macro lens and a thermal camera, the
results in this paper can be reproduced. However, the
macro lens required manual adjustments for each subject
which aggravates calibration. Additionally, the narrow field
of view makes it more likely for a participant's face to move
out of the frame. Employing a Kinect that is calibrated with
the thermal camera is an affordable way to project results
from tracking or detection algorithms from the NIR domain
to the thermal image. In terms of available algorithms and
constancy assumptions, an additional pair of RGB stereo
cameras forms the better solution. Using one or two high
resolution cameras in the stereo setup could allow for addi-
tional analysis of skin and facial parameters.

5 | CONCLUSION

We have proposed a setup to record multimodal data and
have recorded a unique dataset of DTSC users across all age
groups. To our knowledge, this is the first time that a multi-
modal video and audio dataset has been recorded at a
SARS-CoV-2 DTSC. We have shown in our preliminary
evaluations, that the data quality is sufficient for the appli-
cation of already available procedures from computer vision
and computer audition. This could allow for SARS-CoV-2
infection related symptoms assessment from such data in
the future. While we captured only a marginal number of
PCR positive subjects, our dataset can help with the devel-
opment and refinement of computer vision algorithms
beyond the COVID-19 pandemic: After full annotation for
various computer vision tasks such as landmarking or
micro-expression analysis, it has the potential to rank
among the state-of-the-art in terms of the number of partici-
pants and age statistics. It has been recorded in an out-of-
lab setting with realistic participant interaction, which for
example could be encountered at the entrance of an
employee parking area.
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