131 research outputs found

    Individual limb mechanical analysis of gait following stroke

    Get PDF
    The step-to-step transition of walking requires significant mechanical and metabolic energy to redirect the center of mass. Inter-limb mechanical asymmetries during the step-to-step transition may increase overall energy demands and require compensation during single-support. The purpose of this study was to compare individual limb mechanical gait asymmetries during the step-to-step transitions, single-support and over a complete stride between two groups of individuals following stroke stratified by gait speed (≥0.8 m/s o

    Clinical Features Of Familial Hypercholesterolemia In Children And Adults In EAS-FHSC Regional Centre For Rare Diseases In Poland.

    Get PDF
    Background: Familial hypercholesterolemia (FH) is a genetic autosomal co-dominant metabolic disorder leading to elevated circulating concentrations of low-density lipoprotein cholesterol (LDL-C). Early development of atherosclerotic cardiovascular disease (ASCVD) is common in affected patients. We aimed to evaluate the characteristics and differences in the diagnosis and therapy of FH children and adults. Methods: All consecutive patients who were diagnosed with FH, both phenotypically and with genetic tests, were included in this analysis. All patients are a part of the European Atherosclerosis Society FH-Study Collaboration (FHSC) regional center for rare diseases at the Polish Mother’s Memorial Hospital Research Institute (PMMHRI) in Lodz, Poland. Results: Of 103 patients with FH, there were 16 children (15.5%) at mean age of 9 ± 3 years and 87 adults aged 41 ± 16; 59% were female. Children presented higher mean levels of total cholesterol, LDL-C, and high-density lipoprotein cholesterol (HDL-C) measured at the baseline visit (TC 313 vs. 259 mg/dL (8.0 vs. 6.6 mmol/L), p = 0.04; LDL 247 vs. 192 mg/dL (6.3 vs. 4.9 mmol/L), p = 0.02, HDL 53 vs. 48 mg/dL (1.3 vs. 1.2 mmol/L), p = 0.009). Overall, 70% of adult patients and 56% of children were prescribed statins (rosuvastatin or atorvastatin) on admission. Combination therapy (dual or triple) was administered for 24% of adult patients. Furthermore, 13.6% of adult patients and 19% of children reported side effects of statin therapy; most of them complained of muscle pain. Only 50% of adult patients on combination therapy achieved their treatment goals. None of children achieved the treatment goal. Conclusions: Despite a younger age of FH diagnosis, children presented with higher mean levels of LDL-C than adults. There are still urgent unmet needs concerning effective lipid-lowering therapy in FH patients, especially the need for greater use of combination therapy, which may allow LDL-C targets to be met in most of the patients

    Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    Get PDF
    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics

    Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses

    Get PDF
    Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential

    Quadriceps force generation in patients with osteoarthritis of the knee and asymptomatic participants during patellar tendon reflex reactions: an exploratory cross-sectional study

    Get PDF
    BACKGROUND: It has been postulated that muscle contraction is slower in patients with osteoarthritis of the knee than asymptomatic individuals, a factor that could theoretically impair joint protection mechanisms. This study investigated whether patients with osteoarthritis of the knee took longer than asymptomatic participants to generate force during reflex quadriceps muscle contraction. This was an exploratory study to inform sample size for future studies. METHODS: An exploratory observational cross sectional study was carried out. Two subject groups were tested, asymptomatic participants (n = 17), mean (SD) 56.7 (8.6) years, and patients with osteoarthritis of the knee, diagnosed by an orthopaedic surgeon, (n = 16), age 65.9 (7.8) years. Patellar tendon reflex responses were elicited from participants and measured with a load cell. Force latency, contraction time, and force of the reflex response were determined from digitally stored data. The Mann-Whitney U test was used for the between group comparisons in these variables. Bland and Altman within-subject standard deviation values were calculated to evaluate the measurement error or precision of force latency and contraction time. RESULTS: No significant differences were found between the groups for force latency (p = 0.47), contraction time (p = 0.91), or force (p = 0.72). The two standard deviation measurement error values for force latency were 27.9 ms for asymptomatic participants and 16.4 ms for OA knee patients. For contraction time, these values were 29.3 ms for asymptomatic participants and 28.1 ms for OA knee patients. Post hoc calculations revealed that the study was adequately powered (80%) to detect a difference between the groups of 30 ms in force latency. However it was inadequately powered (59%) to detect this same difference in contraction time, and 28 participants would be required in each group to reach 80% power. CONCLUSION: Patients with osteoarthritis of the knee do not appear to have compromised temporal parameters or magnitude of force generation during patellar tendon reflex reactions when compared to a group of asymptomatic participants. However, these results suggest that larger studies are carried out to investigate this area further

    The Association Between Daily Step Count and All-Cause and Cardiovascular Mortality: A Meta-Analysis

    Get PDF
    Aims There is good evidence showing that inactivity and walking minimal steps/day increase the risk of cardiovascular (CV) disease and general ill-health. The optimal number of steps and their role in health is, however, still unclear. Therefore, in this meta-analysis, we aimed to evaluate the relationship between step count and all-cause mortality and CV mortality.Methods and results We systematically searched relevant electronic databases from inception until 12 June 2022. The main endpoints were all-cause mortality and CV mortality. An inverse-variance weighted random-effects model was used to calculate the number of steps/day and mortality. Seventeen cohort studies with a total of 226 889 participants (generally healthy or patients at CV risk) with a median follow-up 7.1 years were included in the meta-analysis. A 1000-step increment was associated with a 15% decreased risk of all-cause mortality [hazard ratio (HR) 0.85; 95% confidence interval (CI) 0.81–0.91; P < 0.001], while a 500-step increment was associated with a 7% decrease in CV mortality (HR 0.93; 95% CI 0.91–0.95; P < 0.001). Compared with the reference quartile with median steps/day 3867 (2500–6675), the Quartile 1 (Q1, median steps: 5537), Quartile 2 (Q2, median steps 7370), and Quartile 3 (Q3, median steps 11 529) were associated with lower risk for all-cause mortality (48, 55, and 67%, respectively; P < 0.05, for all). Similarly, compared with the lowest quartile of steps/day used as reference [median steps 2337, interquartile range 1596–4000), higher quartiles of steps/day (Q1 = 3982, Q2 = 6661, and Q3 = 10 413) were linearly associated with a reduced risk of CV mortality (16, 49, and 77%; P < 0.05, for all). Using a restricted cubic splines model, we observed a nonlinear dose–response association between step count and all-cause and CV mortality (Pnonlineraly < 0.001, for both) with a progressively lower risk of mortality with an increased step count.Conclusion This meta-analysis demonstrates a significant inverse association between daily step count and all-cause mortality and CV mortality with more the better over the cut-off point of 3867 steps/day for all-cause mortality and only 2337 steps for CV mortality

    Return to Employment After Stroke in Young Adults: How Important Is the Speed and Energy Cost of Walking?

    Get PDF
    Background and Purpose- A quarter of individuals who experience a stroke are under the age of 65 years (defined as young adults), and up to 44% will be unable to return to work poststroke, predominantly because of walking difficulties. No research study has comprehensively analyzed walking performance in young adult's poststroke. The primary aim of this study is to investigate how a stroke in young adults affects walking performance (eg, walking speed and metabolic cost) compared with healthy age-matched controls. The secondary aim is to determine the predictive ability of walking performance parameters for return to employment poststroke. Methods- Forty-six individuals (18-40 years: n=6, 41-54 years: n=21, 55-65 years: n=19) who have had a stroke and 15 healthy age-matched able-bodied controls were recruited from 6 hospital sites in Wales, United Kingdom. Type, location, cause of stroke, and demographic factors (eg, employment status) were recorded. Temporal and spatial walking parameters were measured using 3-dimensional gait analysis. Metabolic energy expenditure and metabolic cost of walking were captured during 3 minutes of walking at self-selected speed from measurements of oxygen consumption. Results- Stroke participants walked slower (P<0.004) and less efficiently (P<0.002) than the controls. Only 23% of stroke participants returned to employment poststroke. Walking speed was the strongest predictor (sensitivity, 0.90; specificity, 0.82) for return to work (P=0.004) with a threshold of 0.93 m/s identified: individuals able to walk faster than 0.93 m/s were significantly more likely to return to work poststroke than those who walked slower than this threshold. Conclusions- This study is the first to capture walking performance parameters of young adults who have had a stroke and identifies slower and less efficient walking. Walking speed emerged as the strongest predictor for return to employment. It is recommended that walking speed be used as a simple but sensitive clinical indicator of functional performance to guide rehabilitation and inform readiness for return to work poststroke
    corecore