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Abstract ���

The step-to-step transition of walking requires significant mechanical and metabolic �	�

energy to redirect the center of mass. Inter-limb mechanical asymmetries during the step-to-step �
�

transition may increase overall energy demands and require compensation during single-support. ���

The purpose of this study was to compare individual limb mechanical gait asymmetries during ���

the step-to-step transitions, single-support and over a complete stride between two groups of ���

individuals following stroke stratified by gait speed (�0.8 meters per second (m/s) or <0.8 m/s). ���

Twenty-six individuals with chronic stroke walked on an instrumented treadmill to collect ���

ground reaction force data. Using the individual limbs method, mechanical power produced on ���

the center of mass was calculated during the trailing double-support, leading double-support, and ���

single-support phases of a stride, as well as over a complete stride.  Robust inter-limb ���

asymmetries in mechanical power existed during walking after stroke; for both groups, the non-�	�

paretic limb produced significantly more positive net mechanical power than the paretic limb �
�

during all phases of a stride and over a complete stride.  Interestingly, no differences in inter-���

limb mechanical power asymmetry were noted between groups based on walking speed, during ���

any phase or over a complete stride.   Paretic propulsion, however, was different between speed-���

based groups.  The fact that paretic propulsion (calculated from anterior-posterior forces) is ���

different between groups, but our measure of mechanical work (calculated from all three ���

directions) is not, suggests that limb power output may be dominated by vertical components, ���

which are required for upright support.    ���
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Introduction ���

During the single-support (SS) phase of unimpaired gait, the center of mass (COM) �	�

follows a path similar to the motion of an inverted pendulum (Donelan et al., 2002b).  During the �
�

step-to-step transition, mechanical work is required to redirect the COM velocity vector between ���

the pendulum arcs of each limb (Donelan et al., 2002b; Soo and Donelan, 2012).  Redirection ���

comes from the net combination of: (1) positive work produced during the trailing limb’s double-���

support (DST) phase and (2) negative work produced during the leading limb’s double-support ���

(DSL) phase (Donelan et al., 2002b; Soo and Donelan, 2012).  Minimizing total mechanical ���

work is desirable to minimize metabolic cost (Donelan et al., 2002a; Kuo et al., 2005), and can ���

occur when the timing and magnitude of the leading limb’s negative work is equal to the trailing ���

limb’s positive work (Ellis et al., 2013; Kuo et al., 2005; Soo and Donelan, 2012).  However, ���

even when this occurs, both experimental and simulation studies indicate that the step-to-step �	�

transition requires a substantial amount of metabolic energy relative to the total requirements of a �
�

stride (Donelan et al., 2002a; Kuo et al., 2005; Umberger, 2010).   ���

Divergence from metabolic optimization has been shown to arise from inter-limb ���

mechanical asymmetries during step-to-step transitions in both healthy (Ellis et al., 2013; Soo ���

and Donelan, 2012) and clinical (Bonnet et al., 2014; Doets et al., 2009; Feng et al., 2014; ���

Houdijk et al., 2009) populations.  For example, imposing temporal asymmetry on otherwise ���

healthy gait leads to highly asymmetric step-to-step transition mechanics and increases metabolic ���

cost up to 80% (Ellis et al., 2013).  Similarly, the affected limb of individuals following ���

unilateral transtibial amputation (Houdijk et al., 2009) or total ankle arthroplasty (Doets et al., ���

2009) exhibited less positive work production during DST and the unaffected limb exhibited �	�

greater negative work production during DSL.  In these studies, impaired positive work �
�
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production during DST is suggested to necessitate greater negative work production from the ���

leading limb to redirect the COM 
 
and greater positive work production during SS; all ���

compensations that lead to higher metabolic demand (Doets et al., 2009; Houdijk et al., 2009; ���

Soo and Donelan, 2012).  ���

In individuals following stroke, unilateral impairments in muscle function, commonly ���

paretic plantar-flexors (Allen et al., 2011; Lamontagne et al., 2007b; Peterson et al., 2010; Turns ���

et al., 2007), yield reductions in positive power during DST.  An analysis using the individual ���

limbs method (ILM; Donelan et al., 2002b), examining the SS and DST phases together, ���

revealed greater positive mechanical work production by the non-paretic limb to raise the COM �	�

(Stoquart et al., 2012).  Importantly, this greater mechanical work production was correlated with �
�

greater metabolic cost (Stoquart et al., 2012), potentially limiting gait speed and endurance.  ���

Inter-limb mechanical asymmetries for the separate phases of DST and DSL, when symmetry ���

appears to be an important factor in gait efficiency (Ellis et al., 2013; Soo and Donelan, 2012), ���

and SS, have yet to be comprehensively examined in individuals post-stroke.  In addition, ���

although previous studies have noted a relationship between functional recovery and gait ���

symmetry post-stroke using spatiotemporal measures (Balasubramanian et al., 2007; Patterson et ���

al., 2008) and anterior-posterior ground reaction forces (Bowden et al., 2006), the relationship ���

between ILM mechanical symmetry and function remains unknown. ���

The purpose of this study was to examine gait asymmetry in individuals with post-stroke �	�

hemiparesis by quantifying asymmetry from a mechanical power perspective.  Based on previous �
�

analyses examining individual limb mechanics in patient populations with unilateral impairments 	��

(Doets et al., 2009; Houdijk et al., 2009), we hypothesized that: (1) individuals post-stroke would 	��

exhibit less positive power production from the paretic limb during DST, greater negative power 	��
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production from the non-paretic limb during DSL, and greater positive power production from 	��

the non-paretic limb during SS (each compared to the contralateral limb), and (2) mechanical 	��

asymmetries between limbs would be greater in the group of individuals with reduced gait speed.  	��

 	��

Materials and Methods 	��

Experimental Protocol 		�

A retrospective analysis was conducted at the University of North Carolina at Chapel 	
�

Hill, using data formerly collected through two research protocols examining gait characteristics 
��

in individuals following stroke.  Data from 47 individuals who presented with chronic 
��

hemiparesis were analyzed; 26 individuals met inclusion/exclusion criteria.  Inclusion criteria 
��

included:  unilateral, non-cerebellar brain lesion due to stroke; > 6 months since stroke; ability to 
��

walk � ten meters overground; ability to walk � two minutes on a treadmill without therapist 
��

assistance, or harness unweighting.  Exclusion criteria included: Botox injection to the lower 
��

extremities in the three months preceding testing; musculoskeletal, cardiorespiratory, metabolic, 
��

or additional neurological disorder that could affect gait.   
��

Individuals presented with a range of walking abilities, and were stratified into two 
	�

groups based on self-selected overground gait speed (Perry et al., 1995): 13 individuals walking 

�

at a speed classifying them as ‘community’ walkers (�0.8 meters per second (m/s)) were ����

considered high gait function and 13 individuals walking at a slower speed (<0.8 m/s) were ����

considered low gait function.  Overground gait speed was determined from three passes across a ����

4.3 m GAITRite mat (CIR Systems, Sparta, New Jersey) (Lewek and Randall, 2011).  ����

Individuals used assistive devices and bracing below the knee (e.g., ankle-foot orthosis; AFO) if ����
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necessary.  Prior to participation, all individuals signed a University of North Carolina at Chapel ����

Hill Institutional Review Board approved informed consent form.  ����

 ����

Data Collection ��	�

Data collection took place on a dual-belt treadmill (Bertec Corporation, Columbus, ��
�

Ohio), which was instrumented with two six-component force platforms that sampled ground ����

reaction force (GRF) data at 1080 Hz by a Vicon MX system (Vicon, Los Angeles, California).  ����

Some individuals had not been on a treadmill since their stroke and thus did not feel comfortable ����

walking at their self-selected overground gait speed.  We therefore chose the fastest treadmill ����

speed that we believed could be maintained for each individual (Rhea et al., 2012).  If bracing ����

was used for overground walking, it was retained for treadmill walking.  All subjects in the slow-����

speed group and four subjects in the fast-speed group held onto one or both side-mounted ����

treadmill handrails, each instrumented with a load cell (MLP-150; Transducer Techniques, ����

Temecula, California) capable of recording vertical force.  All individuals wore a safety harness ��	�

(Protecta PRO, Capital Safety, Red Wing, Minnesota) while walking, which did not restrict ��
�

lower extremity movements or provide unweighting during testing.  Individuals walked on the ����

treadmill for at least two minutes, with the second minute used for analysis.  Steps were removed ����

from a trial if an individual’s feet did not fall on separate force platforms or if a stumble ����

occurred.  For five individuals, we were unable to obtain a minimum of ten consecutive steps of ����

usable data from the second minute of walking (due to stumbles or cross-over while walking) ����

and instead analyzed a later minute.  ����

 ����

 ����
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Data Management and Processing ��	�

GRF data were low-pass filtered at a cut-off of 25 Hz in Visual3D software (C-Motion, ��
�

Germantown, Maryland).  Instantaneous contributions to external mechanical power from each ����

limb were calculated according to the ILM described by Donelan et al. (Donelan et al., 2002b) ����

using custom written MATLAB (MathWorks, Natick, Massachusetts) programs.  Briefly, this ����

method computes the COM velocity from external forces (we included vertical handrail reaction ����

force, as necessary) and body mass.  Net forces were divided by mass and then integrated to ����

calculate COM velocity.  The dot product of COM velocity and each limb's GRF gives the ����

instantaneous external mechanical power provided by each limb.  An assumption of the ILM is ����

that gait is periodic and integration is performed over each successive periodic cycle.  This cycle ����

is normally a step (Donelan et al., 2002b) but because of the step asymmetries that exist in ��	�

walking post-stroke (Lewek and Randall, 2011; Patterson et al., 2010), we modified the ��
�

procedure by performing integration over successive strides.  For each stride, instantaneous ����

external mechanical power was normalized to 101 points/stride and averaged for each individual ����

to produce mean instantaneous external mechanical power (Pinst).  ����

To obtain average net external mechanical work, instantaneous external mechanical ����

power generated by each limb was integrated over the following phases: DST (from heel-strike ����

of the contralateral limb to toe-off of the reference limb), DSL (from heel-strike of the reference ����

limb to toe-off of the contralateral limb), SS (from toe-off of the contralateral limb until heel-����

strike of the contralateral limb), and over a complete stride.  The average net external mechanical ����

work values for each limb were then multiplied by phase frequency over a trial (for the measures ��	�

of average net external mechanical work produced over DST, DSL and SS) or stride frequency ��
�

over a trial to obtain total average net external mechanical power (PavgNET) for each phase and ����
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over a stride.  The main outcome variables were therefore: paretic and non-paretic limb peak Pinst ����

during DSL and DST, and PavgNET during DSL, DST, SS, and over a stride.  ����

Secondary measures included spatiotemporal measures, paretic propulsion, and peak ����

vertical handrail forces obtained during treadmill walking.  The step length of the paretic and ����

non-paretic limbs was used to calculate step length asymmetry as the maximum of the non-����

paretic and paretic step lengths divided by the sum of the non-paretic and paretic step lengths ����

(Awad et al., 2014).  Propulsive impulse was calculated as the integral of positive anterior-����

posterior GRF over a complete stride for the paretic and non-paretic limbs.  Paretic propulsion ��	�

(Pp) was then calculated as the propulsive impulse of the paretic limb divided by the sum of the ��
�

propulsive impulse of the paretic and non-paretic limbs (Bowden et al., 2006).  Vertical handrail ����

forces were normalized to body mass, and the peak vertical handrail force was selected for each ����

stride.  The mean of these peak forces was then calculated over all strides for each subject.   ����

 ����

Statistical Analyses ����

Statistical analyses were performed with SPSS (version 21, IBM, Chicago, Illinois).  For ����

the high and low speed-based groups, descriptive statistics (i.e., mean and standard deviation) ����

were calculated for each variable. For all individuals a paired samples t-test (�=0.05) was ����

performed to evaluate differences between self-selected overground gait speed and the treadmill ��	�

speed used for testing.  To examine a relationship previously identified between step length and ��
�

work production during collision of the same limb (Donelan et al., 2002a), we performed a ����

partial correlation (�=0.05) to relate step length to both peak Pinst and PavgNET during DSL for ����

each limb.  Six separate two-way (limb x speed-based group) ANCOVAs (�=0.05) were ����

performed to examine differences in peak Pinst during DSL and DST, PavgNET during DSL, DST, ����
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SS and over a stride.  Separate one-way (speed-based group) ANCOVAs (�=0.05) were ����

performed to examine the difference in group for step length asymmetry and Pp over a stride.  ����

Given the known effect of gait speed on limb mechanical power output (Donelan et al., 2002b) ����

we controlled for treadmill speed when performing the partial correlation and all ANCOVAs.   ����

 ��	�

Results ��
�

The mean treadmill speed of all individuals was slower than the mean self-selected �	��

overground gait speed (p=0.004) (Table 1).  Step length asymmetry was not different between �	��

the high and low groups (p=0.648; see Table 1); within these groups respectively, 7 (of 13), and �	��

9 (of 13) had longer paretic (compared to non-paretic) step lengths.  There was a significant �	��

correlation between the paretic limb’s step length and peak negative Pinst during DSL (r=-0.446, �	��

p=0.026), but no relationship for the non-paretic limb (r=0.047, p=0.822).  There was no �	��

relationship between step length and PavgNET during DSL for the paretic (r=-0.367, p=0.071) or �	��

non-paretic limbs (r=0.331, p=0.107). Pp was significantly greater (p=0.050) in the high �	��

compared to the low group.  Peak vertical handrail forces from the non-paretic upper extremity �		�

were significantly lower (p<0.001) in the high group compared to the low group.    �	
�

For all measures of power (Pinst during DSL and DST, PavgNET during DSL, DST, SS and �
��

over a stride), there was a significant difference between paretic and non-paretic limb, no �
��

difference between speed-based groups, and no interaction effect between limb and speed-based �
��

groups (Table 2, Figures 1-2). The paretic limb produced significantly less positive peak Pinst and �
��

PavgNET during DST, the non-paretic limb produced significantly less negative peak Pinst and �
��

PavgNET during DSL, and the non-paretic limb produced significantly greater positive PavgNET �
��
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during SS (each compared to the contralateral limb).  The paretic limb produced significantly �
��

less positive PavgNET over a stride compared to the non-paretic limb.  �
��

 �
	�

Discussion �

�

The external mechanical power results, computed using the ILM, provide strong evidence ����

of interlimb mechanical asymmetry during gait in individuals following stroke, during all phases ����

of a stride and over a complete stride, however this mechanical asymmetry was not more severe ����

for our group of slower walkers.  This finding that external mechanical power asymmetries were ����

largely unchanged with speed-based group may impact how we think about walking speed as a ����

measure of function. ����

 ����

Individual Limb Mechanical Power ����

Over a complete stride, we observed that PavgNET was positive for the non-paretic limb ��	�

and negative for the paretic limb for both speed-based groups.  Within the gait cycle, our data ��
�

revealed less positive external mechanical power production during paretic DST, less negative ����

external mechanical power production during non-paretic DSL, and more positive external ����

mechanical power production during non-paretic SS (each compared to the contralateral limb).  ����

Evaluation of these sub-phases of gait provides enhanced understanding of how limb kinetic ����

compensations are made during gait following stroke.   ����

For example, the DST phase corresponds with push-off at the end of stance; a frequently ����

studied period of the gait cycle following stroke (Allen et al., 2011; Peterson et al., 2010; ����

Stoquart et al., 2012), likely due to the presence of profound plantar-flexor weakness (Allen et ����

al., 2011; Lamontagne et al., 2007a; Peterson et al., 2010; Turns et al., 2007).  The plantar-��	�
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flexors have a primary responsibility to provide limb propulsion (McGowan et al., 2008; ��
�

Neptune et al., 2001; Peterson et al., 2010), which is often asymmetric following stroke ����

(Balasubramanian et al., 2007; Bowden et al., 2006).  Our subjects demonstrated Pp less than ����

0.50 (0.50= symmetric) and there was less positive peak Pinst and PavgNET from the paretic limb ����

(compared to the non-paretic limb) during DST across both speed-based groups.  Although this ����

is likely due to plantar-flexor weakness on the paretic side (Peterson et al., 2010), examination of ����

mechanical power production at the joint level is needed to confirm this. ����

 During DSL, we observed less negative Pinst and PavgNET from the non-paretic limb ����

(compared to the paretic limb), which was contrary to our hypothesis based on analyses of other ����

patient populations (Doets et al., 2009; Houdijk et al., 2009).  Less negative  PavgNET from the ��	�

non-paretic limb could be attributed to the presence of positive mechanical power production ��
�

during late non-paretic DSL (as seen in Figure 1), which in unimpaired individuals does not ����

typically begin until SS (Donelan et al., 2002b).
 
 The functional consequences of this phase ����

advancement in non-paretic positive power production is unclear, but may indicate earlier or ����

greater non-paretic limb initiation to compensate for less paretic limb propulsive power during ����

DST (Raja et al., 2012).  In addition, a majority of individuals within this study exhibited longer ����

steps in the paretic versus non-paretic limb that caused a step length asymmetry (Donelan et al., ����

2002a), which is common following stroke (Patterson et al., 2010). Step length is positively ����

correlated with negative mechanical work production during heel-strike (Donelan et al., 2002a), ����

which corresponds with the DSL phase of our analysis.  For our individuals, a correlation was ��	�

observed between step length and peak negative Pinst during DSL for the paretic limb, but not for ��
�

the non-paretic limb.  It appears, therefore, that in addition to phase advancement of positive ����
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power production from the non-paretic limb, deficits in step length symmetry may be ����

responsible, in part, for the mechanical asymmetry during DSL.  ����

During SS, we observed greater PavgNET from the non-paretic limb (compared to the ����

paretic limb) across both speed-based groups.  This is likely due, in part, to the continuation of ����

positive mechanical power produced during late non-paretic DSL into SS.  Forward dynamic ����

models have previously suggested that this early phase of SS is a critical period for raising the ����

body’s COM (Neptune et al., 2004).  In addition, we observed negative mechanical power ����

production by the paretic limb during late SS, which persisted into paretic DST and may have ��	�

contributed to the reduction in PavgNET during paretic DST.  The combination of these results ��
�

yields a profound interlimb mechanical asymmetry during SS that produces ����

acceleration/deceleration and rise/fall of the COM with each non-paretic/paretic stance, ����

respectively.  Rather than maintaining a smooth trajectory of COM motion as observed in ����

unimpaired individuals (Donelan et al., 2002b), the result appears to be an inefficient method of ����

maintaining forward progress during walking (Stoquart et al., 2012).    ����

 ����

Asymmetry and Walking Speed ����

 Although we observed significant inter-limb external mechanical power asymmetries ����

during each phase of the stride and over a complete stride, these asymmetries were not different ��	�

between speed-based groups.  Olney et al. (1991) reported comparable findings through a joint ��
�

level analysis, suggesting that inter-limb asymmetry of positive mechanical work production ����

over a complete stride did not relate to gait speed.  Interestingly, our subject’s Pp differed ����

between speed-based groups, similar to the results presented by Bowden et al. (2006).  This ����

suggests that measures of mechanical asymmetry based on sagittal plane kinetics (i.e. anterior-����
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posterior ground reaction force) may be more closely related to function, as classified by walking ����

speed, than work-based metrics that account for multiple joints, and in all three dimensions (i.e. ����

ILM).  The fact that Pp (calculated from anterior-posterior forces only) is different between ����

groups, but our measure of mechanical work (calculated from all three directions) is not, ����

suggests that power output of the paretic limb post-stroke may be dominated by vertical ��	�

components, which are required for upright support.  Furthermore, it could be that those who ��
�

recover well in the anterior-posterior direction (e.g. as reflected by Pp) appear to have a better ����

functional outcome, at least with respect to walking speed.    ����

 The finding that mechanical power asymmetries were largely unchanged with group may ����

also impact how we think about walking speed as a measure of function.  It appears that the ����

ability to walk faster was the result of greater compensation with the non-paretic limb (Bowden ����

et al., 2006).  The use of walking speed as a primary outcome measure in many studies, while an ����

important measure of function, may also represent the ability to compensate with the non-paretic ����

limb. Previous analyses examining external mechanical work for individuals following stroke ����

revealed greater positive mechanical work production by the non-paretic limb to raise the COM ��	�

(Stoquart et al., 2012) which was related to metabolic energy use, another indicator of walking ��
�

function.  Further work will need to be done to establish the respective importance of inter-limb �	��

mechanical asymmetries in each movement direction (i.e., vertical, anterior-posterior, and �	��

medial-lateral) to functional abilities including walking speed, metabolic energy use and �	��

dynamic balance. �	��

Limitations �	��

Our analysis method (ILM) has some limitations. Simulation analyses performed have �	��

shown that under reasonable assumptions regarding muscle activity that external work correlates �	��
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poorly with musculotendon work (Neptune et al., 2009; Neptune et al., 2004; Sasaki et al., 2009).  �	��

Of concern is that external mechanical work calculations, such as those employed in ILM, �		�

exclude muscle co-contraction and thus cannot account for simultaneous negative and positive �	
�

muscle work across joints (Neptune et al., 2009; Neptune et al., 2004; Sasaki et al., 2009) that �
��

may be used to stabilize the body against gravity at significant energy cost.  Additionally, �
��

external mechanical work calculations cannot accurately partition contributions of muscular �
��

versus passive elastic tissue contributions to limb work (e.g. elastic energy storage and release) �
��

and do not explicitly include internal mechanical power (e.g., from the motion of the swing �
��

limb).  However, Zelik and Kuo (2010) reported a qualitative correspondence between inverse �
��

dynamics and external mechanical work rates, and attributed the differences that were observed, �
��

during DSL and the beginning of SS, to energy dissipation and elastic rebound of soft tissue, �
��

respectively, which are not captured through joint-based calculations.  �
	�

 Individuals that required an AFO to provide ankle stability and/or prevent toe drag �

�

continued to use the AFO during data collections.  In the same way, individuals that required ����

upper limb support for stability and balance used treadmill handrail support during data ����

collections. AFOs and handrail support may have affected power generation and absorption ����

throughout the stride, however we felt it best to retain the use of both during testing to replicate ����

normal every-day gait as closely as possible. The effect of AFO use is difficult to quantify in our ����

data, however we were able to quantify handrail use in the vertical direction. Our handrail-����

mounted transducers indicated small vertical handrail support forces (all subjects: 7.5 ±5.6 % ����

BW).  Based on the low magnitude of observed vertical handrail forces, we expect that the ����

unmeasured anterior-posterior handrail forces were also small.  We note, however, that handrail ��	�

forces do have the potential to cause an error in COM velocity calculations based on ground ��
�
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reaction force data alone.  For example, an individual exerting large anterior-posterior handrail ����

forces could reduce the need for the non-paretic limb to compensate during DSL.  We recognize ����

this as a limitation to our study, however, the use of upper-limb support also replicates normal ����

every-day gait as closely as possible (i.e. the use of cane/walker). ����

Individuals post-stroke, exhibit a number of movement patterns, such as hip hiking, stiff-����

knee gait, and drop foot (De Quervain et al., 1996; Mulroy et al., 2003), which
 
may be more ����

pronounced in individuals in the lower speed-based group.  These factors could result in greater ����

mechanical asymmetry but may not be reflected in external mechanical power calculations.  An ����

alternative approach to studying mechanical energetics post-stroke is to use forward dynamic ��	�

modeling which can be performed at the individual muscle-level, producing values that should ��
�

include co-contraction (Peterson et al., 2011).  Musculotendon modeling results in healthy gait ����

have corresponded to joint-based results during DST and DSL (Neptune et al., 2009), but have ����

been shown to exhibit the greatest positive and net mechanical work over a gait cycle during the ����

beginning of SS (Neptune et al., 2009; Neptune et al., 2004; Sasaki et al., 2009).  This is contrary ����

to the pendulum model and inverse dynamic calculations (where the greatest positive and net ����

mechanical work over a gait cycle occurs during DST), and suggests that a significant amount of ����

work that occurs during the beginning of SS is due to muscle co-contraction, believed to control ����

hip and knee flexion and provide lower-limb stability (Neptune et al., 2009).  In short, more ����

studies including simultaneous measurements of symmetry using multiple metrics based on ��	�

varied analysis techniques (e.g. temporal and spatial kinematics, paretic propulsion (Pp), ILM, ��
�

inverse dynamics, forward dynamics computer simulations, ultrasound imaging) are needed to ����

elucidate the impact of symmetry on mechanical and metabolic energy expenditure post-stroke. ����
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Figure Captions ����

Figure 1. Mean Pinst over separate phases of a stride (1: non-paretic DSL/paretic DST; 2: non-����

paretic SS; 3: paretic DSL/non-paretic DST; 4: paretic SS) for the (A) high, and (B) low speed-��	�

based groups. Light grey lines represent non-paretic limb and black lines represent paretic limb.  ��
�

Average non-paretic limb heel strike occurs at 0 normalized stride time and dark grey shading ����

indicates phases of step-to-step transitions.  ����

Abbreviations: Pinst , mean instantaneous external mechanical power; DSL, leading double-����

support; DST, trailing double-support; SS, single-support; W/kg, Watts per kilogram ����

 ����

Figure 2. Mean PavgNET over separate phases of a stride (1: non-paretic DSL/paretic DST; 2: non-����

paretic SS; 3: paretic DSL/non-paretic DST; 4: paretic SS) for the (A) high, and (B) low speed-����

based groups.  Light grey bars represent non-paretic limb and black bars represent paretic limb.  ����

Dark grey shading indicates phases of step-to-step transitions.  Error bars represent one standard ��	�

deviation. ��
�

Abbreviations: PavgNET, total average net external mechanical power; DSL, leading double-����

support; DST, trailing double-support; SS, single-support; W/kg, Watts per kilogram ����
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Table 1. Speed-based group description ����

 

 

High 

(n=13) 

Low 

(n=13) 

Self-Selected Overground Speed (m/s)   

   Range (min/max) .83/1.3 .19/.78 

   Mean 1.0±.16 .52±.20 

Treadmill Speed (m/s)   

   Range (min/max) .49/1.3 .15/.70 

   Mean .90±.20 .50±.18 

Gender (male/female) 7/6 7/6 

Age (years) 56±8.4 54±12 

Time Post Stroke (months) 103±92 30±17 

Height (cm) 175±8.4 173±9.3 

Weight (kg) 91±18 93±13 

Lower Extremity Fugl-Meyer 28±2.1 22±4.0 

Paretic Limb (right/left) 7/6 7/6 

Swing Time (s)   

   Non-paretic .38±.04 .37±.07 

   Paretic .42±.06 .56±.10 

Stance Time (s)   

   Non-paretic .81±.13 1.3±.30 

   Paretic 0.77±.11 1.1±.27 

Step Length (cm)   



�

�

���

   Non-paretic 50±7.7 37±10 

   Paretic 50±8.4 40±13 

Step Length Asymmetry 0.52±0.02 0.55±0.04 

Pp Stride 0.41±0.07 0.29±0.13 

Peak Vertical Handrail Force (%BW) 3.0±4.0 11.0±4.0 

 ����

Abbreviations: m/s, meter per second; cm, centimeter; kg, kilogram; s, second; Pp, paretic ����

propulsion; %BW, percent body weight ����
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