799 research outputs found

    Systematic comparison of trip distribution laws and models

    Full text link
    Trip distribution laws are basic for the travel demand characterization needed in transport and urban planning. Several approaches have been considered in the last years. One of them is the so-called gravity law, in which the number of trips is assumed to be related to the population at origin and destination and to decrease with the distance. The mathematical expression of this law resembles Newton's law of gravity, which explains its name. Another popular approach is inspired by the theory of intervening opportunities which argues that the distance has no effect on the destination choice, playing only the role of a surrogate for the number of intervening opportunities between them. In this paper, we perform a thorough comparison between these two approaches in their ability at estimating commuting flows by testing them against empirical trip data at different scales and coming from different countries. Different versions of the gravity and the intervening opportunities laws, including the recently proposed radiation law, are used to estimate the probability that an individual has to commute from one unit to another, called trip distribution law. Based on these probability distribution laws, the commuting networks are simulated with different trip distribution models. We show that the gravity law performs better than the intervening opportunities laws to estimate the commuting flows, to preserve the structure of the network and to fit the commuting distance distribution although it fails at predicting commuting flows at large distances. Finally, we show that the different approaches can be used in the absence of detailed data for calibration since their only parameter depends only on the scale of the geographic unit.Comment: 15 pages, 10 figure

    Tweets on the road

    Full text link
    The pervasiveness of mobile devices, which is increasing daily, is generating a vast amount of geo-located data allowing us to gain further insights into human behaviors. In particular, this new technology enables users to communicate through mobile social media applications, such as Twitter, anytime and anywhere. Thus, geo-located tweets offer the possibility to carry out in-depth studies on human mobility. In this paper, we study the use of Twitter in transportation by identifying tweets posted from roads and rails in Europe between September 2012 and November 2013. We compute the percentage of highway and railway segments covered by tweets in 39 countries. The coverages are very different from country to country and their variability can be partially explained by differences in Twitter penetration rates. Still, some of these differences might be related to cultural factors regarding mobility habits and interacting socially online. Analyzing particular road sectors, our results show a positive correlation between the number of tweets on the road and the Average Annual Daily Traffic on highways in France and in the UK. Transport modality can be studied with these data as well, for which we discover very heterogeneous usage patterns across the continent.Comment: 15 pages, 17 figure

    Is spatial information in ICT data reliable?

    Get PDF
    An increasing number of human activities are studied using data produced by individuals' ICT devices. In particular, when ICT data contain spatial information, they represent an invaluable source for analyzing urban dynamics. However, there have been relatively few contributions investigating the robustness of this type of results against fluctuations of data characteristics. Here, we present a stability analysis of higher-level information extracted from mobile phone data passively produced during an entire year by 9 million individuals in Senegal. We focus on two information-retrieval tasks: (a) the identification of land use in the region of Dakar from the temporal rhythms of the communication activity; (b) the identification of home and work locations of anonymized individuals, which enable to construct Origin-Destination (OD) matrices of commuting flows. Our analysis reveal that the uncertainty of results highly depends on the sample size, the scale and the period of the year at which the data were gathered. Nevertheless, the spatial distributions of land use computed for different samples are remarkably robust: on average, we observe more than 75% of shared surface area between the different spatial partitions when considering activity of at least 100,000 users whatever the scale. The OD matrix is less stable and depends on the scale with a share of at least 75% of commuters in common when considering all types of flows constructed from the home-work locations of 100,000 users. For both tasks, better results can be obtained at larger levels of aggregation or by considering more users. These results confirm that ICT data are very useful sources for the spatial analysis of urban systems, but that their reliability should in general be tested more thoroughly.Comment: 11 pages, 9 figures + Appendix, Extended version of the conference paper published in the proceedings of the 2016 Spatial Accuracy Conference, p 9-17, Montpellier, Franc

    Crowdsourcing the Robin Hood effect in cities

    Full text link
    Socioeconomic inequalities in cities are embedded in space and result in neighborhood effects, whose harmful consequences have proved very hard to counterbalance efficiently by planning policies alone. Considering redistribution of money flows as a first step toward improved spatial equity, we study a bottom-up approach that would rely on a slight evolution of shopping mobility practices. Building on a database of anonymized credit card transactions in Madrid and Barcelona, we quantify the mobility effort required to reach a reference situation where commercial income is evenly shared among neighborhoods. The redirections of shopping trips preserve key properties of human mobility, including travel distances. Surprisingly, for both cities only a small fraction (5%\sim 5 \%) of trips need to be altered to reach equity situations, improving even other sustainability indicators. The method could be implemented in mobile applications that would assist individuals in reshaping their shopping practices, to promote the spatial redistribution of opportunities in the city.Comment: 9 pages, 4 figures + Appendi

    Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells

    Get PDF
    The performance of lanthanum nickelate, La2NiO4+δ (LNO), as a cathode in IT-SOFCs with the electrolyte cerium gadolinium oxide, Ce0.9Gd0.1O2−δ (CGO), has been investigated by AC impedance spectroscopy of symmetrical cells. A significant reduction in the area specific resistance (ASR) has been achieved with a layered cathode structure consisting of a thin compact LNO layer between the dense electrolyte and porous electrode. This decrease in ASR is believed to be a result of contact at the electrolyte/cathode boundary enhancing the oxygen ion transfer to the electrolyte. An ASR of 1.0 Ω cm2 at 700 °C was measured in a symmetrical cell with this layered structure, compared to an ASR of 7.4 Ω cm2 in a cell without the compact layer. In addition, further improvements were observed by enhancing the cell current collection and it is anticipated that a symmetrical cell consisting of a layered structure with adequate current collection would lower these ASR values further

    Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC

    Get PDF
    In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material

    Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance

    Get PDF
    Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste

    Viscous stabilization of 2D drainage displacements with trapping

    Full text link
    We investigate the stabilization mechanisms due to viscous forces in the invasion front during drainage displacement in two-dimensional porous media using a network simulator. We find that in horizontal displacement the capillary pressure difference between two different points along the front varies almost linearly as function of height separation in the direction of the displacement. The numerical result supports arguments taking into account the loopless displacement pattern where nonwetting fluid flow in separate strands (paths). As a consequence, we show that existing theories developed for viscous stabilization, are not compatible with drainage when loopless strands dominate the displacement process.Comment: The manuscript has been substantially revised. Accepted in Phys. Rev. Let

    Immigrant community integration in world cities

    Full text link
    As a consequence of the accelerated globalization process, today major cities all over the world are characterized by an increasing multiculturalism. The integration of immigrant communities may be affected by social polarization and spatial segregation. How are these dynamics evolving over time? To what extent the different policies launched to tackle these problems are working? These are critical questions traditionally addressed by studies based on surveys and census data. Such sources are safe to avoid spurious biases, but the data collection becomes an intensive and rather expensive work. Here, we conduct a comprehensive study on immigrant integration in 53 world cities by introducing an innovative approach: an analysis of the spatio-temporal communication patterns of immigrant and local communities based on language detection in Twitter and on novel metrics of spatial integration. We quantify the "Power of Integration" of cities --their capacity to spatially integrate diverse cultures-- and characterize the relations between different cultures when acting as hosts or immigrants.Comment: 13 pages, 5 figures + Appendi

    From mobile phone data to the spatial structure of cities

    Get PDF
    Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral data but also provide information about the structure of cities and their dynamical properties. In this article, we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish metropolitan areas. We first define an urban dilatation index which measures how the average distance between individuals evolves during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most crowded places in the city. We propose a parameter free method to detect them and to test the robustness of our results. The number of these hotspots scales sublinearly with the population size, a result in agreement with previous theoretical arguments and measures on employment datasets. We study the lifetime of these hotspots and show in particular that the hierarchy of permanent ones, which constitute the "heart" of the city, is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows us to distinguish different categories of cities, from monocentric and "segregated" where the spatial distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is much more important. These results point towards the possibility of a new, quantitative classification of cities using high resolution spatio-temporal data.Comment: 14 pages, 15 figure
    corecore