We investigate the stabilization mechanisms due to viscous forces in the
invasion front during drainage displacement in two-dimensional porous media
using a network simulator. We find that in horizontal displacement the
capillary pressure difference between two different points along the front
varies almost linearly as function of height separation in the direction of the
displacement. The numerical result supports arguments taking into account the
loopless displacement pattern where nonwetting fluid flow in separate strands
(paths). As a consequence, we show that existing theories developed for viscous
stabilization, are not compatible with drainage when loopless strands dominate
the displacement process.Comment: The manuscript has been substantially revised. Accepted in Phys. Rev.
Let