120 research outputs found

    Dynamic capabilities, expert and entrepreneurial learning

    Get PDF
    This article focuses on how managers sense and seize opportunities for learning and developing dynamic capabilities in organisations. An approach of building process theory from cases traces learning events in the technological innovation approaches of three securities custodians facing an increasingly dynamic market. The article extends and elaborates the dynamic capability learning framework (Lecler, 2013) which proposes that managers recognise learning opportunities through two types of learning, expert and entrepreneurial, with variants for technological and organisational problem solving. The concept of entrepreneurial learning is further elaborated to help explain differences in the learning patterns found. Distinctive characteristics of the two types of learning are proposed pertaining to opportunity recognition and realisation, and the problem solving strategy. The framework helps to analyse data in terms of four learning patterns: expert honing and aligning, and entrepreneurial shaping and configuring. Further, entrepreneurial learning is suggested to facilitate dynamic capability development in a highly dynamic environment

    Ion source developments for stable and radioactive ion beams at GANIL

    Get PDF
    Since now many years, the Ganil ion source team has in charge to develop ion sources with three main purposes. The first one concerns the radioactive ion production that implies high efficiency ion sources as the amount of created exotic atoms is very low (between 10 to 108 particle per second). The second one deals with high intensities of stable metallic ion beams for the injectors of the accelerator while the last one tries to increase the intensities of very high charge state ion beams for atomic physic. Concerning radioactive ion production, the recent results obtained, in collaboration with the ISN Grenoble group, with the 1+/n+ method drove us to develop a new concept of ecr ion source for monocharged ion production. The results of the first tests of this source will be given. This new idea for the construction of ecr ion source can be applied to multicharged ion production. Concerning the high charge state ion beam production, a new source called SUPERSHYPIE has been built that allow to increase by a factor 2 the length of the plasma of an ECR4M source. This new concept has just been started and has produced arround 50 nAe of Ar17+ . The first results of this new source will be presented. Concerning the developments of metallic ion beams, a separated poster will be presented at this workshop

    Effect of Phase Noise on the Frequency Calibration of a Tunable Laser by Heterodyne Signal Filtering

    Get PDF
    Using a frequency comb as frequency reference to calibrate the instantaneous frequency of a tuning laser allows high spectral resolution and a wide calibration range. To obtain the instantaneous frequency of the laser under test, a classical method consists in filtering the heterodyne signal between the frequency comb and the tunable laser with a narrow bandpass filter. For free-running femtosecond lasers, the phase noise of the comb lines affects the instantaneous frequency of the heterodyne signal and the envelope of the filtered calibration signal. In this paper, the characteristics of the frequency calibration signal envelope is analyzed by modeling. Three different filters are used to determine the envelope characteristics. Simulation results show that the probability density function (pdf) of the envelope amplitude tend to be a uniform distribution at higher phase noise level. At low tuning speed, the pdf distributions are the same at symmetric frequency positions of the passband of the filter. At high tuning speed, their distributions become different. The standard deviation of the center of mass becomes larger at higher phase noise level and higher tuning speed

    120kev Ar8+-li Collisions Studied By Near Uv And Visible Photon Spectroscopy

    Get PDF
    A spectroscopic analysis of light emitted in the 200-600 nm wavelength range by Ar7+, Ar6+ and Ar5+ ions after charge exchange in 120keV Ar8+-Li collisions is performed. Transitions with Δn = 1 and Δn = 2 for n = 8, 9, 10 and 11 states of Ar8 following single electron capture are identified and the production cross sections for n = 8 and n = 9 are deduced from emission cross sections and compared with those calculated by the three-body classical trajectory Monte-Carlo method. Lines due to double capture process were observed and identified as Rydberg transitions 3snl-3sn\u27l\u27 (n = 7, 8 and 9) in Ar VII. Lines due to triple electron capture process were found and identified as transitions 3s2nl-3s2n\u27ĂŻ and 3s3pnl- 3s3pril\u27(n = 7, 8) in Ar VI. The configurations produced during the collision provides evidence that electron-electron interaction play an important role in double and triple charge exchange processes. © 1993 IOP Publishing Ltd

    Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder

    Get PDF
    A glass cuboid, embedded inside a dielectric cylinder is studied when illuminated with a monochromatic plane wave. A photonic nanojet (PNJ) with a full-width at half-maximum (FWHM) waist of around 0.25λ0 is obtained outside the external surface of the cuboid. The influence of the parameters of a square section cuboid is studied. Three particular phenomena can be obtained and are discussed: an ultra-narrow PNJ on the external surface of the cuboid, a long photonic jet and the excitation of whispering gallery modes (WGMs). A parametric study, over the width and the height of a rectangular section cuboid, shows that these parameters can be used to control the photonic jet properties. We also study several other geometries of the insert, which shows that the key parameter is the refractive index of the inserted material. Finally, we show that by changing the incident angle we can obtain a curved photonic jet

    METALLIC ION DEVELOPMENTS AT GANIL

    Get PDF
    Radioactive ion beams (RIB) are routinely produced at GANIL by fragmentation of the projectile. A possible way to improve the RIB intensity is to increase the primary beam intensity impinging the target. Although high intensities can be obtained with an ECR ion source for gaseous elements, it is more difficult for metallic elements due to the poor ionization efficiency of the source. This report deals with metallic ion beam production at high intensity. Experimental results for Ca, Ni and Fe are presented. The oven and the MIVOC methods are compared

    Quality Indicators for Colonoscopy Procedures: A Prospective Multicentre Method for Endoscopy Units

    Get PDF
    BACKGROUND AND AIMS: Healthcare professionals are required to conduct quality control of endoscopy procedures, and yet there is no standardised method for assessing quality. The topic of the present study was to validate the applicability of the procedure in daily practice, giving physicians the ability to define areas for continuous quality improvement. METHODS: In ten endoscopy units in France, 200 patients per centre undergoing colonoscopy were enrolled in the study. An evaluation was carried out based on a prospectively developed checklist of 10 quality-control indicators including five dependent upon and five independent of the colonoscopy procedure. RESULTS: Of the 2000 procedures, 30% were done at general hospitals, 20% at university hospitals, and 50% in private practices. The colonoscopies were carried out for a valid indication for 95.9% (range 92.5-100). Colon preparation was insufficient in 3.7% (range 1-10.5). Colonoscopies were successful in 95.3% (range 81-99). Adenoma detection rate was 0.31 (range 0.17-0.45) in successful colonoscopies. CONCLUSION: This tool for evaluating the quality of colonoscopy procedures in healthcare units is based on standard endoscopy and patient criteria. It is an easy and feasible procedure giving the ability to detect suboptimal practice and differences between endoscopy-units. It will enable individual units to assess the quality of their colonoscopy techniques

    Roadmap on Label-Free Super-resolution Imaging

    Get PDF
    Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label-free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.Peer reviewe
    • 

    corecore