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Effect of Phase Noise on the Frequency Calibration
of a Tunable Laser by Heterodyne Signal Filtering

Wenhui Yu, Pierre Pfeiffer, Sylvain Lecler and Joël Fontaine

Abstract—Using a frequency comb as frequency reference to
calibrate the instantaneous frequency of a tuning laser allows
high spectral resolution and a wide calibration range. A classical
method to obtain the instantaneous frequency of the laser under
test is by filtering the heterodyne signal between the frequency
comb and the tunable laser with a narrow bandpass filter. For
free-running femtosecond lasers, the phase noise of the comb
lines affects the instantaneous frequency of the heterodyne signal
and the envelope of the filtered calibration signal. In this paper,
the characteristics of the frequency calibration signal envelope is
analyzed by modeling. Three different filters are used to consider
the envelope characteristics. Simulation results show that the
probability density function (PDF) of the envelope amplitude
tend to be a uniform distribution at higher phase noise level.
At low tuning speed, the PDF distributions are the same at
symmetric frequency positions of the passband of the filter.
At high tuning speed, their distributions become different. The
standard deviation of the center of mass becomes larger at higher
phase noise level and higher tuning speed.

Index Terms—filter, heterodyne, optical frequency comb, phase
noise.

I. INTRODUCTION

MEASURING the dynamic frequency of a laser is im-
portant in revealing the working mechanism of the

laser and also for applications where frequency modulation
is required. For example, in light detection and ranging (Li-
DAR) systems based on frequency modulated continuous wave
(FMCW), the instantaneous optical frequency of the swept
laser should be monitored for passive linearization of the tun-
ing speed [1], [2]. In tunable laser spectroscopy, the frequency
should be calibrated in order to record the spectral features
correctly [3], [4], [5]. Conventional spectrometers such as
Fabry-Perot etalon and dispersion gratings, have difficulties
in fulfilling both high spectral resolution and wide measuring
range. Recently, spectral dynamics analysis based on optical
heterodyne method has shown great power in offering high
spectral resolution [6], [7]. Meanwhile, in these heterodyning
spectrometers, the frequency combs have been used as the
local oscillators (LOs) to heterodyne with the laser under test
(LUT) [3], [4], [8], allowing for wideband and high precision
frequency calibration.

To analyze the spectral dynamics of the LUT, the frequency
is down-converted by the LO laser into the radio frequency
(RF) region and thus can be analyzed electronically. The dy-
namic frequency of the LUT is obtained by processing the het-
erodyne signal, which in general, can be categorized into two
types of processing methods. The first is the spatiotemporal

The authors are with the ICube-IPP, University of Strasbourg, CNRS, 67412
Illkirch, Strasbourg (Email: wenhui.yu@unistra.fr).

presentation of the dynamic frequency, forming a spectrogram
by offline signal processing, such as the short time Fourier
transform, or wavelet transform. These methods can provide
the spectral components of the obtained heterodyne signal
within the analyzing time windows, forming the spectrogram
of the dynamic signal. However, it requires offline signal
processing, thus the heterodyne signal should be digitized with
a sampling speed greater than the Nyquist frequency and the
digitized data is then recorded for processing. The bandwidth
and the registered memory depth of the data acquisition system
limit the maximum frequency that can be recorded. The second
method uses frequency discriminators based on narrowband
bandpass filters (NBFs). The frequency difference is converted
to the difference of the intensity of the output filtered signal.
The later method is online real-time filtering and is particularly
suitable in some situations, for example, the filtered signal can
be used as the triggering signal for sampling another signal.

In heterodyne detection, the phase of the IF (intermediate
frequency) signal is the phase difference between the electric
fields of the LUT and the LO. The spectrum of the RF signal
is the exact down-converted version of the optical spectrum of
the LUT only when the contribution of the phase noise of the
LO is neglectable. Thus, highly stable and narrow linewidth
LO lasers are required. However, for free-running (that is
without phase-lock-loop for frequency stabilization) single-
frequency solid-state lasers, the typical measured linewidth
is a few kilohertz over one second measuring time and it
is often in the megahertz rangefor monolithic diode lasers.
Even though sub hertz linewidth of laser diodes has been
achieved by stabilizing based on high-finesse cavities and
phase locking between lasers [8], the phase locking process is
not a trivial task. This is also true for completely locking the
frequency combs. To avoid the complexity of phase locking of
a frequency comb, free-running combs are sometimes used and
the phase noise is considered as a systematic noise contributor
[1], [9]. On the other hand, the weak power of the individual
comb line results in a relatively low signal-to-noise ratio,
which in turn, results a significant corruption of the amplitude
of the beat signal. A knowledge of the effect of phase noise
on the amplitude helps us to determine what is the origin of
the amplitude noise and further increases the signal-to-noise
ratio correspondingly.

In this paper, the effect of phase noise of the LO laser on the
spectral resolution using a heterodyne with filtering method
is considered. To achieve this, an ideal linearly tuned laser
is considered as the dynamic frequency source. In practice
a real tunable laser can only be tuned quasi-linearly. This
assumption does not lose its generality, since within the small
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passband of the NBF, the chirping characteristic of the tuning
laser can be well approximated by its first order approximation
and the whole dynamic process is composed by sections
having different chirp rate [10]. In the following sections,
we will discuss how the phase noise of the LO makes the
envelope of the calibration signal deviate from the amplitude-
frequency response curve of the NBF. As a result, random
oscillations in the envelope occurs [3]. To characterize the
random oscillation, the probability density function (PDF) of
the envelope amplitude at different frequency positions of the
calibration signal is computed. In the simulation, we started
from the output signal of the NBF in a truncated time interval,
where the heterodyne signal is simulated by a linear chirped
signal that is contaminated by a Gaussian phase noise.

This paper is organized as follows: in Section 2, we first
describe a typical tuning frequency calibration system using
frequency comb and filtering approach. It should be noted that
the result can also be applied to the single frequency LO laser.
In Section 3, the model for analyzing the phase noise effect is
built. Then in Section 4, simulation results are presented and
discussed.

II. TUNING FREQUENCY CALIBRATION USING
HETERODYNING AND FILTERING

A. System description

A typical setup of frequency calibration of a tunable laser
using heterodyning and a filtering method is shown in Fig.
1(a), similar to the setup described in [3], [4]. An optical
frequency comb is used as the LO. The optical frequency
comb is generated from a mode-locked femtosecond laser,
that can be regarded as formed by a large number of single
frequency lasers whose frequencies are separated by the pulse
repetition rate. This structure of spectrum allows for a wide
range frequency calibration of the tunable laser .

The beams from the tunable laser and the frequency comb
interfere on the photodetector. In general, the photocurrent
contains the frequency components generated by heterodyning
between the different comb lines as well as the frequency
components generated by heterodyning between the tuning
LUT and the comb lines. The former includes the repetition
rate of the comb (fr) and its harmonies whereas the latter
includes the beat signal frequencies (between the LUT and the
nearest comb line) and its offset versions by nfr. By setting
the passband of the NBF away from the repetition rate fr, the
high power of fr and its harmonies are filtered out. Thus, only
the heterodyne signal between the LUT and the nearest comb
line should be considered, which can be written in complex
form (consider only the AC term):

S̃i(t) = 2R
√
PTPnexp[i2π(νT − νn)t+ i(θT − θn)] (1)

Here, R is the responsivity of the photodetector. PT and Pn

are the optical powers, νT and νn are the optical frequencies
and θT and θn are the phase noises of the tunable laser
and the comb line respectively. After the narrow bandpass
filter, the heterodyne signal passes through only when the
frequency is within the passband of the NBF, producing peak
signals. Hence, the peak signal are the time markers that
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Fig. 1. (a). Schematic of a typical frequency calibration by the filtering
heterodyne signal. LUT: laser under test. LO, local oscillator. NPBS: non-
polarized beamsplitter. PD: photodetector. NBF, narrowband filter. (b). Illus-
tration of the frequency position relation between the tunable laser and the
frequency comb lines. fr is the repetition rate of the frequency comb. νT
and νn are the frequencies of the tunable laser and its nearest comb line.
(c). Illustration of calibration signal. This calibration signal is generated by
filtering the heterodyne signal. The peaks correspond to the time when the
frequency of the LUT equals νn ± f0, where f0 is the central frequency of
the NBF and νn is the optical frequency of the nearest comb line.

correspond to the frequency of the LUT νLUT equaling to
νn ± f0, where f0 is the central frequency of the NBF and
νn is the optical frequency of the nearest comb line. Ideally,
the amplitude of the calibration signal envelope follows the
amplitude-frequency response curve of the NBF, thus we can
determine the instantaneous frequency of the input chirping
signal from the envelope of the calibration signal.

B. Distortion of the calibration signal envelope due to phase
noise

The envelope of the calibration signal follows the
amplitude-frequency response curve of the NBF only when the
rising time of the NBF is smaller than the time required for
the tuning heterodyne signal to go through the passband of the
NBF. Also, for a phase noise contaminated LO, its phase noise
will be transmitted to the heterodyne signal. After filtered by
the NBF, the envelope of the calibration signal deviates from
the ideal envelope. To determine the position of the centroid
of the envelope, the center of mass of the envelope is used,
which is defined for a general non-negative function f(x) as:
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xc =

∫ +∞
−∞ xf(x)dx∫ +∞
−∞ f(x)dx

(2)

In what follows, the effect of the phase noise along with the
tuning speed on the calibration signal is investigated from
analyzing the following two statistics:

(a) the PDF of the envelope amplitude at a given frequency
position, and

(b) the distribution of the center of mass under the effect of
phase noise

These two statistical quantities are related to the type of
phase noise. In the present paper, Gaussian phase noise is
analyzed numerically. In the model, the parameters that have
effects on the signal filtering process, including the phase
noise, the chirp rate of the heterodyne signal and the band-
width of the NBF, are considered and expressed in normalized
form.

III. MODEL

In this section, the model for obtaining the PDF of the
envelope of the calibration signal is built. For a LUT that
is linearly tuned, the heterodyne signal in (1) can be rewritten
as a linearly chirped signal:

S̃i(t) = S0exp[i2π(f0 + vt/2)t+ iθ(t)] (3)

where f0 is the heterodyne frequency at t = 0, v is the
frequency tuning speed of the tunable laser and θ(t) is the
phase noise of the LO. For convenience, let f0 be the central
frequency of the NBF. The impulse response of the NBF in
complex form can be written as:

h̃(t) = h(t)exp(i2πf0t) (4)

where h(t) is the envelope of the impulse response of the NBF.
The filtered output at time t0 is the convolution between the
input signal and the impulse response of the filter:

S̃(t0) = (

∫ T

−∞
+

∫ +∞

T

)h̃(t)S̃i(t0 − t)dt (5)

where T is a positive number that is several times larger than
the rise time of the NBF, which divides the integral into two
sections. The envelope of the impulse response h(t) of a stable
and causal linear time-invariant (LTI) system satisfies the
following conditions: (a) tends to be 0 when t goes to infinity
and (b) equals to 0 when t < 0. Thus we can approximate the
result of (5) by rejecting the integral from T to +∞ and write
(5) into (5a) as:

S̃(t0) '
∫ T

0

h̃(t)S̃i(t0 − t)dt (5a)

The effect of truncating the integral limit from (5) to (5a) is
analyzed in Section III-D. Substituting (3) and (4) into (5a),
we obtained the envelope of the signal filtered by the NBF:

S(t0) = S0

∣∣∣∣∣
∫ T

0

h(t)exp[i2πv(t0 − t)2/2 + iθ(t0 − t)]dt

∣∣∣∣∣
(6)

For white Gaussian phase noise, the reversal of time integra-
tion direction does not change the statistics of θ(t), therefore
we can replace θ(t0 − t) by θ(t0 + t) and write (6) into (6a)
as:

S(t0) = S0

∣∣∣∣∣
∫ T

0

h(t)exp[i2πv(t0 − t)2/2 + iθ(t+ t0)]dt

∣∣∣∣∣
(6a)

The phase term in (6a) is composed of two parts. The first
phase term is the quadratic phase change due to linear tuning
of the LUT. The second phase term is the phase noise from the
LO. It can be seen from (6a) that the calculated envelope at
given time t0 is only determined by the value of the integrands
in the time interval from 0 to T . For Gaussian noise, the phase
noise term θ(t + t0) undergoes the same random process as
θ(t) in this time interval. Thus, when we consider the statistical
characteristics of the envelope distribution at given frequency
position, (6a) can be reduced to:

S(t0) = S0

∣∣∣∣∣
∫ T

0

h(t)exp[i2πv(t0 − t)2/2]exp[iθ(t)]dt

∣∣∣∣∣ (7)

However, when considering the envelope evolution, (6a)
should be used, since there exists the same integration part
between the two adjacent times. In the following sections, the
parameters in (6a) and (7) are discussed.

A. Phase noise of the LO

For a free-running optical frequency comb, only intracavity
noises are present, since there is no phase-lock-loop for
stabilizing the comb lines. The fundamental origin of phase
noise is quantum noise that arises from amplified spontaneous
emission of the gain medium [11]. For this type of noise, the
frequency fluctuation f(t) = dθ(t)/dt is a white Gaussian
noise process f(t) ∼ N(0, 2π∆ν2), where ∆ν is the 3dB
linewidth of the LO. We can simulate the evolution of the
phase noise θ(t) by integrating independent Gaussian noise,
which results in a Brownian motion of the phase:

θ(t) =
√

2π∆νψ(t) (8)

where ψ(t) is a normalized Brownian motion process with
zero-mean and variance E[ψ2(t)] = t.

B. Narrow bandpass filter

In the frequency calibration systems described in Section
II, the NBF acts as a frequency discriminator. For a correct
frequency-intensity conversion without distortion, the band-
width of the NBF should be chosen such that its rise time is
smaller than the time required for the chirping frequency to
pass through the bandwidth of the NBF. This rule of thumb for
bandwidth selection of the NBF was adopted in [3], [4] and
more details of the NBF design consideration can be found
in [12]. Without considering the phase noise of the LO, the
characteristics of the envelope of the calibration signal are
related to the type of the NBF and the normalized chirp rate,
which is defined as:

α =
v

B2
(9)
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Fig. 2. Envelope of the impulse response of the NBF used in the present
work. The functions of the envelope of the impulse response h(t) are
2Bexp(−2Bt), 16B[Bt exp(−2Bt)] and 4B exp(−2Bt) sin(2Bt) for
RC, RC-2 and Butt-2 filters respectively. B is the noise-equivalent bandwidth.

where B is the bandwidth of the NBF in Hertz and v is the
chirp rate of the heterodyne signal (it is also the tuning speed
of the tunable laser) in Hertz per second. It is pointed out
by the authors in [12] that the bandwidth selection is a trade-
off between the width of the calibration signal and the large
intensity attenuation of its amplitude. Too large normalized
tuning speed causes large attenuation and distortion of the
calibration signal. In the present work, we limit the normalized
tuning speed to α ≤ 0.5 in order to conform the correct
frequency-intensity transform condition.

Three analog filters are used in the simulation: a single tuned
filter (RC filter), a two-stage decoupled resonant filter (RC-2
filter) and a second order Butterworth filter (Butt-2 filter). The
envelopes of the impulse response of these filters are shown
in Fig. 2. For convenience of expressing the impulse response
function of the NBF, we use the noise-equivalent bandwidth,
which is defined as:

B =

∫ +∞
0

∣∣h(t)
∣∣2 dt∣∣∣∫ +∞

0
h(t)dt

∣∣∣2 (10)

It can be shown (see Appendix A) that using (10), the
envelope of the impulse response functions can be respec-
tively expressed as 2Bexp(−2Bt), 16B[Bt exp(−2Bt)] and
4Bexp(−2Bt) sin(2Bt) for RC, RC-2 and Butt-2 filters
respectively, where B is the noise-equivalent bandwidth of
the NBFs.

C. Parameterized expression

For generality, we normalize the frequency parameters in
(6a) and (7), such as the linewidth of the LO, to the bandwidth
of the NBF B. Meanwhile, we normalize the time parameters,
such as the truncation time T , to the rise time of the NBF,
which is proportional to 1/B. By taking T = τ/B and
introducing a normalized time scale u = t/T , we rewrite the

envelope of filtered calibration signal (6a) in the form that is
integrated within unit time interval from 0 to 1 as:

SN (u0) =

∣∣∣∣∣ τB
∫ 1

0

h(
uτ

B
)exp[

iv(u0 − u)2τ2

2B2
]exp[iθ(

τ(u+ u0)

B
)]du

∣∣∣∣∣
(11)

Here, the amplitude is normalized by taking SN = S/S0.
Substituting the phase noise expression (8) into (11) and
normalizing the linewidth of the LO and the chirp rate by
taking η = ∆ν/B and α = v/B2 respectively, we get:

SN (u0) = τ

∣∣∣∣∣
∫ 1

0

g(τu)exp[
iα(u− u0)2τ2

2
]exp[i

√
2πτηψ(u+ u0)]du

∣∣∣∣∣
(12)

From (11) to (12), we use the property of Brownian motion
that ψ(τ(u+u0)/B) =

√
τ/Bψ(u+u0). It is better to use the

normalized input instantaneous frequency, which is defined as
ξ = vt/B = ατu, instead of using time as the independent
variable:

SN (ξ0) = τ

∣∣∣∣∣
∫ 1

0

g(τu)exp[
i(ξ0 − ατu)2

2α
]exp[i

√
2πτηψ(u+

ξ0
ατ

)]du

∣∣∣∣∣
(13)

By this substitution, the envelope of the calibration signal and
the amplitude response of the NBF have the same independent
variable, facilitating the analysis of the distortion of the signal
shape. For example, ξ = 0 and ξ = 1 correspond to the time
when the heterodyne frequency is equal to the passband central
and the bandwidth B of the NBF respectively.

Similarly, the parameterized form of (7) can be written as:

SN (ξ0) = τ

∣∣∣∣∣
∫ 1

0

g(τu)exp[
i(ξ0 − ατu)2

2α
]exp[i

√
2πτηψ(u)]du

∣∣∣∣∣
(14)

The effect of the phase noise of the LO in calibration of a
tunable laser using heterodyne and narrow bandpass filter can
now be estimated using (13) and (14). Appendix B summarizes
the parameters used in the modeling and simulations.

D. Error sources in simulation

Simulations were carried out using numerical integration of
(14) to estimate the PDF of the calibration signal envelope
at given frequency positions and using (13) for observing
the envelope evolution with respect to frequency position.
Numerical errors in the simulation are mainly introduced by
the following two aspects.

(1). The error induced by discrete time integration. In
the simulation, the continuous integration was estimated by
numerical integration at times un = {nd}n=1,2,...,N , where
d = 1/N with N being the number of time moment. (13)
and (14) show that for the same time interval d, when any
of the parameters τ , α and η becomes larger, the numerical
estimation deviates more from the continuous time integration.
This gives us a method to estimate d by setting τ , α and η at
the largest values required and thus see the maximum value
of d for which the PDF does not change anymore.

(2). The error induced by truncation of the integration time
τ , i.e. the error introduced by using (5a) to estimate (5) similar
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Fig. 3. Effect of sampling time d. The estimated PDFs are generated by
setting the parameters at the largest value required: τ = 5, α = 0.1 and
η = 0.5.

Normalized envelope amplitude 𝑆𝑁

Fig. 4. Effect of integration time truncation. (ξ = 0, α = 0.1 and η = 0.5).

to (1). We selected the acceptable value of the truncation time
by setting τ , α and η at the largest values and selected a value
for which the PDF does not change anymore.

As mentioned in Section III-B, the bandwidth of the NBF
should be selected such that the normalized speed is small.
Therefore in the present work α ≤ 0.5 is considered. This
indicates that, for a typical laser tuning speed of 10 nm/s
(1.25 THz/s at 1550 nm), the bandwidth should not be smaller
than 1.6 MHz. In the present work, we consider the noise
level η ≤ 0.5, since the linewidth of a free-running fiber-
based frequency comb is reported from tens to hundreds of
kilohertz [13]. Taking τ = 5, α = 0.5 and η = 0.5, the
estimated PDF of the envelope amplitude SN with different
sampling time d is shown in Fig. 3, in which an RC filter
is used. We can see that when d < 0.01, the error induced
by numerical integration becomes neglectable. The following
simulations results are based on d = 0.005.

Fig. 4 shows the results for different truncation times τ , with
parameters ξ = 0, α = 0.1, η = 0.5 and d = 0.005. We can
see that when τ > 2, the error induced by the time truncation
can be neglected. In the following simulation results, τ = 5
is adopted.

Normalized envelope amplitude 𝑆𝑁

Fig. 5. Estimated PDF of envelope amplitude SN at the passband central
frequency (ξ = 0). τ = 5, α = 0.1.

IV. RESULTS AND DISCUSSION

A. Probability density function of the envelope amplitude SN

Fig. 5 shows the estimated PDF of the envelope amplitude
of the calibration signal with different phase noise levels at the
passband center (ξ = 0). The parameters were set as τ = 5,
α = 0.1 and an RC filter was used. When the phase noise η
gets larger, the distribution spreads into wider range, becoming
more like uniform distribution.

Fig. 6 shows the estimated PDF at different frequency po-
sitions (ξ). From the center to the passband edge frequencies,
the envelope amplitude that has the maximum probability is
decreasing. This is in accordance with the characteristic of
the transfer function of the NBF. However, the amplitude
distribution is more uniformly distributed at the passband edge
frequency. Comparing Fig. 6(a), (b) and (c), we can see that at
smaller chirp rate α, the distributions at symmetric frequency
position of the passband, e.g. ξ = 2 and ξ = −2, are the
same (Fig. 6(a)). When the chirp rate α becomes larger, the
distribution becomes more asymmetric (Fig. 6(c)).

The distributions using different filters are shown in Fig.
7. A small improvement can be seen between the RC-2 filter
and RC filter. Better results can be obtained using Butt-2 filter
with values larger than 1.

B. Distribution of center of mass of the envelope amplitude

A typical envelope of the calibration signal is shown in Fig.
8, showing the amplitude fluctuations. The statistical properties
of the amplitude at different normalized frequencies have been
shown in the previous section. In this section we characterize
the overall property of the filtered envelope. The centroid of
the envelope is used to determine the instantaneous frequency
of the LUT in [3]. Here we define the centroid as the center
of mass of the filtered calibration peak, as defined in (2).

The distribution of the center of mass of the envelope is
shown in Fig. 9. It can be seen that both the chirp rate and
the phase noise affect the uncertainty of the center of mass.
Comparing Fig. 9(a) and (b), we see that at small chirp rates,
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Fig. 6. Estimated PDF at different frequency positions with different chirp
rates. (a) α = 0.01. (b) α = 0.1. (c) α = 0.5. Parameters used are τ = 5,
η = 0.32 with RC filter.
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Fig. 7. Estimated PDF with different filters. (a). In frequency position ξ = 0.
(b). In frequency position ξ = 2. Parameters used are τ = 5, α = 0.1 and
η = 0.04.
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Fig. 8. The envelope of the filtered calibration signal with different phase
noise level. Parameters used are τ = 5, α = 0.5 with RC-2 filter.

(a)

(b)

(c)𝜶 = 𝟎. 𝟎𝟏

𝜶 = 𝟎. 𝟓

Fig. 9. Distribution of the center of mass of filtered calibration signal with
different chirp rates. (a) and (b), histograms of simulation result with α =
0.01 and α = 0.5 respectively using τ = 5 and RC-2 filter. (c), the standard
deviation of the Gaussian fit of (a) and (b).

the mean value of the center of mass is at the central frequency
of the NBF (ξ = 0), while the mean value deviates from the
central frequency of the filter at large chirp rates, even when
the phase noise is small. This result is in accordance with the
analysis in [12], that the deviation of maximum response under
dynamic condition is proportional to the normalized chirp rate.

Using normal distribution to fit the histogram in Fig. 9(a)
and (b), the standard deviation of the Gaussian fit of the
distribution is shown in Fig. 9(c). We find that the stan-
dard deviation of the distribution has a power relationship
with the normalized phase noise η. For α = 0.01 it gives
σ = 0.088×η0.53 and for α = 0.5 it gives σ = 0.065×η0.54.

V. CONCLUSION

Calibrating the instantaneous frequency of a tuning laser
is important in many fields, such as tunable diode laser
absorption spectroscopy (TDLAS), frequency scanning inter-
ferometry (FSI), etc. The developing method using frequency
comb as local oscillator in heterodyning and filtering shows
high spectral resolution and wide calibration range. For a non-
fully stabilized frequency comb, the phase noise of the comb
lines affects the calibration signal envelope. In this paper, a
model for characterizing the envelope amplitude affected by
the Gaussian phase noise of the comb lines is presented. In this
model, the tuning speed of the tunable laser, the phase noise
level of the LO and the type of the narrow passband filter
are taken into account. As shown in the model, the effect of
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these parameters are closely related to the bandwidth of the
NBF, that can be expressed in normalized form. It shows that
the PDF of the envelope amplitude tends to be a uniformly
distributed when the phase noise is larger. At low tuning
speed, the PDF distributions has little difference at symmetric
frequency positions of the passband of the NBF. When tuning
speed increase, these distributions become different. It shows
that both the tuning speed and the phase noise level of the
LO laser contribute to the center of mass distributions. For
example, Gaussian fit of the center of mass distribution shows
the standard deviation of σ = 0.016 and σ = 0.19 for the
normalized noise level η = 10−3 and η = 10−1 respectively at
normalized tuning speed α = 0.5 for RC filter. Considering the
use of an RC filter with noise-equivalent bandwidth B=1.58
MHz in the calibration of a tuning laser with tuning speed
10 nm/s at 1550 nm (α = 0.5), the standard deviation of
the center of mass is 300 kHz for linewidth ∆ν = 158 kHz
(η = 0.1) comb linewidth.

Although the analyses described above are based on analog
filters, it is easy to be applied in digital filtering, especially for
finite impulse response (FIR) filters, the impulse response of
which are finite. This means that there is no truncation error if
we take the whole impulse response as the analysis interval in
(5) and (5a). For digital infinite impulse response (IIR) filters,
the impulse response of the filter is truncated similarly to the
analog filters.

APPENDIX A
IMPULSE RESPONSE OF FILTERS

In the following, the impulse response function of the NBF
expressed in the noise-equivalent bandwidth is derived. The
system function of the single tuned RC filter is:

HRC(s) =
πBc

(s− i2πf0) + πBc
(A1)

Where Bc and f0 are is the -3dB bandwidth and the central
frequency of the NBF. By inverse Laplace transform, the
impulse response function is:

h̃RC(t) = πBcexp[−(πBc − i2πf0)t] (A2)

Using (10), the noise-equivalent bandwidth of the RC filter
B can be calculated to be πBc/2. Substituting into (A2), the
envelope of the impulse response function can be obtained as:

hRC(t) = 2Bexp(−2Bt) (A3)

The impulse response function of the RC-2 and Butt-2 filters
can be obtained in the similar way.

APPENDIX B
PARAMETERS SUMMARY

The parameters used in the modeling and simulations are
summarized in Table I.
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TABLE I
PARAMETERS USED IN MODELING AND SIMULATIONS.

Parameter Description Normalization Unit

α Normalized chirp rate of
the heterodyne signal (lin-
ear tuning speed of the
tuning laser).

v/B2 -

B Noise equivalent band-
width of the NBF.

- Hz

d The time step in the nu-
merical integration.

1/N -

∆ν The linewidth of the LO. - Hz
η Phase noise level. Nor-

malized linewidth of the
LO.

∆ν/B -

h(t) The impulse response of
the NBF.

- -

v The tuning speed of the
tunable laser and the chirp
rate of the heterodyne sig-
nal.

- Hz/s

ψ(t) Standard Brownian mo-
tion process.

θ(t)/
√

2π∆ν -

SN Envelope amplitude of the
filtered signal.

- -

T Truncation time. - s
τ Normalized truncation

time.
BT -

θ(t) Phase noise of the LO. - rad
u Normalized time scale. t/T = Bt/τ -
ξ Normalized frequency of

the NBF.
vt/B = ατu -
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