4,303 research outputs found

    Technology requirements of exploration beyond Neptune by solar sail propulsion

    Get PDF
    This paper provides a set of requirements for the technology development of a solar sail propelled Interstellar Heliopause Probe mission. The mission is placed in the context of other outer solar systems missions, ranging from a Kuiper Belt mission through to an Oort cloud mission. Mission requirements are defined and a detailed parametric trajectory analysis and launch date scan performed. Through analysis of the complete mission trade space a set of critical technology development requirements are identified which include an advanced lightweight composite High-Gain Antenna, a high-efficiency Ka-band travelling-wave tube amplifier and a radioisotope thermoelectric generator with power density of approximately 12 W/kg. It is also shown that the Interstellar Heliopause Probe mission necessitates the use of a spinning sail, limiting the direct application of current hardware development activities. A Kuiper Belt mission is then considered as a pre-curser to the Interstellar Heliopause Probe, while it is also shown through study of an Oort cloud mission that the Interstellar Heliopause Probe mission is the likely end-goal of any future solar sail technology development program. As such, the technology requirements identified to enable the Interstellar Heliopause Probe must be enabled through all prior missions, with each mission acting as an enabling facilitator towards the next

    Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease

    Get PDF
    Keratinocyte differentiation is essential for skin development and the formation of the skin permeability barrier. This process involves an orchestrated remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by β-glucocerebrosidase, sphingomyelinase, phospholipases and sterol sulfatase generates ceramides, non-esterified fatty acids and cholesterol for the lipid-containing extracellular matrix, the lamellar membranes in the stratum corneum. The importance of triacylglycerol (TAG) hydrolysis for the formation of a functional permeability barrier was only recently appreciated. Mice with defects in TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2-knock-out) or TAG catabolism (comparative gene identification-58, -CGI-58-knock-out) develop severe permeability barrier defects and die soon after birth because of desiccation. In humans, mutations in the CGI-58 gene also cause (non-lethal) neutral lipid storage disease with ichthyosis. As a result of defective TAG synthesis or catabolism, humans and mice lack ω-(O)-acylceramides, which are essential lipid precursors for the formation of the corneocyte lipid envelope. This structure plays an important role in linking the lipid-enriched lamellar membranes to highly cross-linked corneocyte proteins. This review focuses on the current knowledge of biochemical mechanisms that are essential for epidermal neutral lipid metabolism and the formation of a functional skin permeability barrier

    Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model

    Full text link
    We present a realistic model of the fragile glass former orthoterphenyl and the results of extensive molecular dynamics simulations in which we investigated its basic static and dynamic properties. In this model the internal molecular interactions between the three rigid phenyl rings are described by a set of force constants, including harmonic and anharmonic terms; the interactions among different molecules are described by Lennard-Jones site-site potentials. Self-diffusion properties are discussed in detail together with the temperature and momentum dependencies of the self-intermediate scattering function. The simulation data are compared with existing experimental results and with the main predictions of the Mode Coupling Theory.Comment: 20 pages and 28 postscript figure

    Disorder Effects on Exciton-Polariton Condensates

    Full text link
    The impact of a random disorder potential on the dynamical properties of Bose Einstein condensates is a very wide research field. In microcavities, these studies are even more crucial than in the condensates of cold atoms, since random disorder is naturally present in the semiconductor structures. In this chapter, we consider a stable condensate, defined by a chemical potential, propagating in a random disorder potential, like a liquid flowing through a capillary. We analyze the interplay between the kinetic energy, the localization energy, and the interaction between particles in 1D and 2D polariton condensates. The finite life time of polaritons is taken into account as well. In the first part, we remind the results of [G. Malpuech et al. Phys. Rev. Lett. 98, 206402 (2007).] where we considered the case of a static condensate. In that case, the condensate forms either a glassy insulating phase at low polariton density (strong localization), or a superfluid phase above the percolation threshold. We also show the calculation of the first order spatial coherence of the condensate versus the condensate density. In the second part, we consider the case of a propagating non-interacting condensate which is always localized because of Anderson localization. The localization length is calculated in the Born approximation. The impact of the finite polariton life time is taken into account as well. In the last section we consider the case of a propagating interacting condensate where the three regimes of strong localization, Anderson localization, and superfluid behavior are accessible. The localization length is calculated versus the system parameters. The localization length is strongly modified with respect to the non-interacting case. It is infinite in the superfluid regime whereas it is strongly reduced if the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New Frontiers" by Springer (2012), the original publication is available at http://www.springerlink.co

    Multi-Attribute Tradespace Exploration for Survivability

    Get PDF
    Multi-Attribute Tradespace Exploration for Survivability is a system design and analysis methodology that incorporates survivability considerations into the tradespace exploration process (i.e., a solution-generating and decision-making framework that applies decision theory to model-based design). During the concept generation phase of tradespace exploration, the methodology applies seventeen empirically validated survivability design principles spanning susceptibility reduction, vulnerability reduction, and resilience enhancement. During subsequent concept evaluation, the methodology adds value-based survivability metrics to traditional architectural evaluation criteria of mission utility and lifecycle cost. Applied to a satellite radar mission, the methodology allowed operational survivability to be statistically evaluated across representative distributions of naturally occurring disturbances in the space environment and for survivability to be incorporated as a decision factor earlier in the design process. Constellations in the illustrative example are shown to be the most survivable, mitigating disturbances architecturally, rather than through additive features.Massachusetts Institute of Technology (Systems Engineering Advancement Research Initiative (SEAri))Massachusetts Institute of Technology. Program on Emerging Technologie

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&

    Methods and Costs to Achieve Ultra Reliable Life Support

    Get PDF
    A published Mars mission is used to explore the methods and costs to achieve ultra reliable life support. The Mars mission and its recycling life support design are described. The life support systems were made triply redundant, implying that each individual system will have fairly good reliability. Ultra reliable life support is needed for Mars and other long, distant missions. Current systems apparently have insufficient reliability. The life cycle cost of the Mars life support system is estimated. Reliability can be increased by improving the intrinsic system reliability, adding spare parts, or by providing technically diverse redundant systems. The costs of these approaches are estimated. Adding spares is least costly but may be defeated by common cause failures. Using two technically diverse systems is effective but doubles the life cycle cost. Achieving ultra reliability is worth its high cost because the penalty for failure is very high
    corecore