6,432 research outputs found

    Involute composite design evaluation using global design sensitivity derivatives

    Get PDF
    An optimization capability for involute structures has been developed. Its key feature is the use of global material geometry variables which are so chosen that all combinations of design variables within a set of lower and upper bounds correspond to manufacturable designs. A further advantage of global variables is that their number does not increase with increasing mesh density. The accuracy of the sensitivity derivatives has been verified both through finite difference tests and through the successful use of the derivatives by an optimizer. The state of the art in composite design today is still marked by point design algorithms linked together using ad hoc methods not directly related to a manufacturing procedure. The global design sensitivity approach presented here for involutes can be applied to filament wound shells and other composite constructions using material form features peculiar to each construction. The present involute optimization technology is being applied to the Space Shuttle SRM nozzle boot ring redesigns by PDA Engineering

    Exploring reflective design: an approach to digital archives

    Get PDF
    In this short paper we discuss our explorations with adopting reflective design as an approach to designing a digital archive for the performing arts. The stakeholders in this project are diverse, comprised of members of the partner organisation, the public, the design team and government funding agencies. Each stakeholder has different expectations and skills to bring to the project. It is proposed that reflective design with its mix of critical reflection with a human centred design and prototyping approach provides a methodological framework that enables the complexities of the project to be integrated into an action orientated design exploration

    Behavioural compensation by drivers of a simulator when using a vision enhancement system

    Get PDF
    Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system

    Direct measurements of DOCO isomers in the kinetics of OD+CO

    Get PDF
    Quantitative and mechanistically-detailed kinetics of the reaction of hydroxyl radical (OH) with carbon monoxide (CO) have been a longstanding goal of contemporary chemical kinetics. This fundamental prototype reaction plays an important role in atmospheric and combustion chemistry, motivating studies for accurate determination of the reaction rate coefficient and its pressure and temperature dependence at thermal reaction conditions. This intricate dependence can be traced directly to details of the underlying dynamics (formation, isomerization, and dissociation) involving the reactive intermediates cis- and trans-HOCO, which can only be observed transiently. Using time-resolved frequency comb spectroscopy, comprehensive mechanistic elucidation of the kinetics of the isotopic analogue deuteroxyl radical (OD) with CO has been realized. By monitoring the concentrations of reactants, intermediates, and products in real-time, the branching and isomerization kinetics and absolute yields of all species in the OD+CO reaction are quantified as a function of pressure and collision partner.Comment: 19 pages, 4 figure

    Virtuality in human supervisory control: Assessing the effects of psychological and social remoteness

    Get PDF
    Virtuality would seem to offer certain advantages for human supervisory control. First, it could provide a physical analogue of the 'real world' environment. Second, it does not require control room engineers to be in the same place as each other. In order to investigate these issues, a low-fidelity simulation of an energy distribution network was developed. The main aims of the research were to assess some of the psychological concerns associated with virtual environments. First, it may result in the social isolation of the people, and it may have dramatic effects upon the nature of the work. Second, a direct physical correspondence with the 'real world' may not best support human supervisory control activities. Experimental teams were asked to control an energy distribution network. Measures of team performance, group identity and core job characteristics were taken. In general terms, the results showed that teams working in the same location performed better than team who were remote from one another

    Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes

    Full text link
    Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the phonon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure

    Multimodal experiments in the design of living archive

    Get PDF
    Designing a ‘living archive’ that will enable new forms of circus performance to be realised is a complex and dynamic challenge. This paper discusses the methods and approaches used by the research team in the design of the Circus Oz Living Archive. Essential to this project has been the design of a responsive methodology that could embrace the diverse areas of knowledge and practice that have led to a design outcome that integratesthe affordances of the circus with those of digital technologies. The term ‘living archive’ has been adopted as a means to articulate the dynamic nature of the archive. This is an archive that will always be evolving, not only because of the on going collection of content, but more importantly because the performance of the archive users will themselves become part of the archive collection

    Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes

    Full text link
    We have investigated the polarization dependence of the generation and detection of radial breathing mode (RBM) coherent phonons (CP) in highly-aligned single-walled carbon nanotubes. Using polarization-dependent pump-probe differential-transmission spectroscopy, we measured RBM CPs as a function of angle for two different geometries. In Type I geometry, the pump and probe polarizations were fixed, and the sample orientation was rotated, whereas, in Type II geometry, the probe polarization and sample orientation were fixed, and the pump polarization was rotated. In both geometries, we observed a very nearly complete quenching of the RBM CPs when the pump polarization was perpendicular to the nanotubes. For both Type I and II geometries, we have developed a microscopic theoretical model to simulate CP generation and detection as a function of polarization angle and found that the CP signal decreases as the angle goes from 0 degrees (parallel to the tube) to 90 degrees (perpendicular to the tube). We compare theory with experiment in detail for RBM CPs created by pumping at the E44 optical transition in an ensemble of single-walled carbon nanotubes with a diameter distribution centered around 3 nm, taking into account realistic band structure and imperfect nanotube alignment in the sample

    Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The datasets associated with Figs. 1–6 are included in this published article as a Supplementary Data file. Metagenome sequence files have been deposited in the European Nucleotide Archive. Accession number: PRJEB38942.Code availability: Code used for metagenome analysis: FastQC; MultiQC; FLASH2; Metaphlan2; Hclust2 and ARGs-OAP v2.Determining the selective potential of antibiotics at environmental concentrations is critical for designing effective strategies to limit selection for antibiotic resistance. This study determined the minimal selective concentrations (MSCs) for macrolide and fluoroquinolone antibiotics included on the European Commission's Water Framework Directive's priority hazardous substances Watch List. The macrolides demonstrated positive selection for ermF at concentrations 1-2 orders of magnitude greater (>500 and 7.8 and <15.6 µg/L). This highlights the need for compound specific assessment of selective potential. In addition, a sub-MSC selective window defined by the minimal increased persistence concentration (MIPC) is described. Differential rates of negative selection (or persistence) were associated with elevated prevalence relative to the no antibiotic control below the MSC. This increased persistence leads to opportunities for further selection over time and risk of human exposure and environmental transmission.Biotechnology and Biological Sciences Research Council (BBSRC)Natural Environment Research Council (NERC

    How anthocyanin mutants respond to stress: the need to distinguish between stress tolerance and maximal vigour

    Get PDF
    Background: Anthocyanins are produced by plants in response to diverse stresses. Mutants that block the anthocyanin biosynthetic pathway (ABP) at various steps can easily be compared across numerous abiotic stresses. Hypothesis: Anthocyanins or their precursors are required for stress tolerance. Thus, ABP loss-of-function mutants should have proportionately lower fitness than wildtype plants under stress, compared with benign conditions. In contrast, a decrease in maximal vigour - the general capacity for growth and fecundity - should be most pronounced under benign conditions that allow luxuriant growth by the most vigorous genotypes. Tests: Determine whether, under stressful conditions, ABP loss-of-function mutants have relatively lower fitness than wildtype plants. Also, test for reduced maximal vigour by determining whether ABP mutants have comparatively decreased fitness under optimal (\u27benign\u27) growing conditions. Organism: Arabidopsis thaliana loss-of-function mutants (representing all steps in the ABP), as well as wildtype plants, in two genetic backgrounds. Methods: We grew plants under near-optimal conditions and five stress treatments (UV-B, drought, cold, low Ca:Mg, high Ni). We estimated relative fitness as an individual\u27s lifetime fertility, relative to the mean wildtype fertility in a given treatment. Results: Stress treatments significantly reduced lifetime fertility of wildtype and mutant lines. Wildtypes outperformed anthocyanin-deficient mutants under benign conditions, but as the stress increased, the difference between wildtype and mutant fitness diminished. Fitness did not increase with a mutation\u27s sequential position in the ABP, nor was there an effect of the ability to produce flavonols on fertility. Conclusions: Mutations in the ABP did not reduce stress tolerance. Rather, the loss of ABP function reduced maximal vigour, most evidently in near-optimal growth conditions. © 2010 Eric J. von Wettberg
    • …
    corecore