66 research outputs found

    Effect of head-upright tilt on the dynamic of cerebral autoregulation.

    Get PDF
    The effect of head-upright tilting on the rate of cerebral autoregulation was studied in 12 healthy volunteers (nine men and three women; age range 20-36 years). The dynamics of cerebral autoregulation was determined from the rate of change in cerebral resistance (RoR) during a drop in arterial blood pressure induced by rapid deflation of a 3-min ischaemic thigh cuff and from the ratio of changes in cerebral blood flow and arterial blood pressure (CAI) during the recovery period after the drop in arterial blood pressure. The test was performed supine and with 40 degrees head-up tilt (40 degrees HUT). Middle cerebral artery mean blood flow velocity was measured by transcranial Doppler simultaneously with peripheral arterial blood pressure using Finapres. The thigh cuff deflation induced a larger drop in arterial pressure during 40 degrees HUT [median -28% (25 percentile -36, 75 percentile -19)] than in the supine position [-16% (-23, -15)] (P < 0.01) and in cerebral resistance [supine: -12% (-15, -6); 40 degrees HUT: -15% (-20, -12); P < 0.05]. There was no significant change in RoR [15% s-1 (12, 15)] and CAI [1.9 (1.5, 3.1)] measured supine and during 40 degrees HUT [RoR: 13% s-1 (12, 15); CAI: 1.3 (0.99, 1.9)]. During the drop in arterial pressure, the relationship between arterial blood pressure and systolic peak-to-peak interval exhibited an hysteresis loop, indicating a cardiopulmonary and/or baroreflex activation that was not observed with cerebral resistance. The rate of autoregulation is an intrinsic property of the cerebral vascular bed and is not affected by the vasodilator state in the range of arterial blood pressure changes induced by the tight cuff method

    Vascular uptake of rehydration fluids in hypohydrated men at rest and exercise

    Get PDF
    The purpose of this study was to formulate and to evaluate rehydration drinks, which would restore total body water and plasma volume (PV), for astronauts to consume before and during extravehicular activity, a few hours before reentry, and immediately after landing. In the first experiment (rest, sitting), five healthy men (23-41 yr), previously dehydrated for 24 hr., drank six (1a, 2, 4, 5, 6, 7) fluid formulations (one each at weekly intervals) and then sat for 70 min. Pre-test PV were measured with Evans blue dye and changes in PV were calculated with the hematocrit-hemoglobin transformation equation. This rest experiment simulated hypohydrated astronauts preparing for reentry. The second experiment (exercise, supine) followed the same protocol except four healthy men (30-46 yr) worked for 70 min. in the supine position on a cycle ergometer at a mean load of 71+/-1 percent of their peak aerobic work capacity. This exercise experiment simulated conditions for astronauts with reduced total body water engaging in extravehicular activity

    TSP-1 Secreted by Bone Marrow Stromal Cells Contributes to Retinal Ganglion Cell Neurite Outgrowth and Survival

    Get PDF
    BACKGROUND: Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. METHODS AND FINDINGS: The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-beta expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-beta in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. CONCLUSIONS: Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair

    Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions

    Get PDF
    International audienceBACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury

    Functional Analysis of the Cathepsin-Like Cysteine Protease Genes in Adult Brugia malayi Using RNA Interference

    Get PDF
    Filarial nematodes are an important group of human pathogens, causing lymphatic filariasis and onchocerciasis, and infecting around 150 million people throughout the tropics with more than 1.5 billion at risk of infection. Control of filariasis currently relies on mass drug administration (MDA) programs using drugs which principally target the microfilarial life-cycle stage. These control programs are facing major challenges, including the absence of a drug with macrofilaricidal or permanent sterilizing activity, and the possibility of the development of drug-resistance against the drugs available. Cysteine proteases are essential enzymes which play important roles in a wide range of cellular processes, and the cathepsin-like cysteine proteases have been identified as potential targets for drug or vaccine development in many parasites. Here we have studied the function of several of the cathepsin-like enzymes in the filarial nematode, B. malayi, and demonstrate that these cysteine proteases are involved in the development of embryos, show similar functions to their counterparts in C. elegans, and therefore, provide an important target for future drug development targeted to eliminate filariasis

    miRNAs as Biomarkers and Therapeutic Targets in Non-Small Cell Lung Cancer: Current Perspectives

    Get PDF
    • …
    corecore