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Nanosecond pulsed electric field inhibits
proliferation and induces apoptosis in
human osteosarcoma

Xudong Miao1†, Shengyong Yin2†, Zhou Shao2, Yi Zhang3 and Xinhua Chen2*
Abstract

Objective: Recent studies suggest that nanosecond pulsed electric field (nsPEF) is a novel minimal invasive and
non-thermal ablation method that can induce apoptosis in different solid tumors. But the efficacy of nsPEF on
bone-related tumors or bone metastasis is kept unknown. The current study investigates antitumor effect of nsPEF
on osteosarcoma MG-63 cells in vitro.

Method: MG-63 cells were treated with nsPEF with different electric field strengths (0, 10, 20, 30, 40, and 50 kV/cm)
and different pulse numbers (0, 6, 12, 18, 24, and 30 pulses). The inhibitory effect of nsPEF on the growth of MG-63 cells
was measured by Cell Counting Kit-8 (CCK-8) assay at different time points (0, 3, 12, 24, and 48 h post nsPEF treatment).
The apoptosis was analyzed by Hoechst stain, in situ terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end
labeling (TUNEL), and flow cytometric analysis. The expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand
(RANKL), and tumor necrosis factor α (TNF-α) was examined by reverse-transcription polymerase chain reaction (RT-PCR)
and western blot.

Results: The CCK-8 assay showed that nsPEF induced a distinct electric field strength- and pulse number-dependent
reduction of cell proliferation. For treatment parameter optimizing, the condition 40 kV/cm and 30 pulses at 24 h post
nsPEF achieved the most significant apoptotic induction rate. Hoechst, TUNEL, and flow cytometric analysis showed that
the cell apoptosis was induced and cells were arrested in the G0/G1 phase. PCR and western blot analysis demonstrated
that nsPEF up-regulated OPG expression had no effect on RANKL, increased OPG/RANKL ratio.

Conclusion: NsPEF inhibits osteosarcoma growth, induces apoptosis, and affects bone metabolism by up-regulating OPG,
indicating nsPEF-induced apoptosis in osteosarcoma MG-63 cells. NsPEF has potential to treat osteosarcoma or bone
metastasis. When nsPEF is applied on metastatic bone tumors, it might be beneficial by inducing osteoblastic
differentiation without cancer proliferation. In the future, nsPEF might be one of the treatments of metastatic
bone tumor.
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Introduction
Osteosarcoma is a malignant bone tumor with high
occurrence in children and young adolescents. Re-
trospective review showed that in the past 30 years,
osteosarcoma had a poor prognosis and there was no
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significant improvement of disease-free survival and the
stagnated situation has not improved even with the ag-
gressive use of neoadjuvant chemotherapy and radiation
therapy [1]. Patients did not benefit from overtreatment,
and as a result, a high rate of lung metastasis, recur-
rence, and pathological fracture frequently occur, keep-
ing osteosarcoma still one of the lowest survival rates in
pediatric cancers [2]. Thus, new therapeutic strategy
needs to be developed.
Nanosecond pulsed electric field (nsPEF) is an innova-

tive electric ablation method based on high-voltage
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power technology, which came into medical application
in the last decade [3]. NsPEF accumulates the electric
field energy slowly and releases it into the tumor in
ultra-short nanosecond pulses, altering electrical con-
ductivity and permeability of the cell membrane, causing
both cell apoptosis and immune reaction [4].Quite dif-
ferent from any other traditional local ablation method,
nsPEF accumulate less Joule heating and showed no
hyperthermic effects [5], indicating unique advantage
over other thermal therapies such as radiofrequency,
cryoablation, microwave, and interstitial laser; nsPEF can
be used alone and so avoid the side effect caused by
chemotherapy or percutaneous ethanol injection [6].
We have used nsPEF to ablate tumor and showed the

equal outcome as the radical resection with proper indi-
cation [7]. Clinical trials and pre-clinical studies from
different groups proved that nsPEF has direct antitumor
effects by inhibiting proliferation and causing apoptosis
in human basal cell carcinoma [8, 9], cutaneous papil-
loma, squamous cell carcinoma [10], melanoma [11, 12],
hepatocellular tumor [13], pancreatic tumor [14], colon
tumor [15, 16], breast cancer [17, 18], salivary adenoid
cystic carcinoma [19], oral squamous cell carcinoma
[20], et al. Local ablation with nsPEF indicates the no-
ticeable advantage of not only eliminating original tu-
mors but also inducing an immune reaction, e.g.,
enhance macrophage [21] and T cell infiltration [22] and
induce an immune-protective effect against recurrences
of the same cancer [23]. The characteristic of electric
field on bone metabolism [24] is extremely helpful for
osteosarcoma patients with pathological fracture which
leads to poor prognosis [25, 26].
Considering osteosarcoma is especially prevalent in

children and young adults during quick osteoblastic dif-
ferentiation [1, 2], unstable RB gene and p53 gene are
commonly involved in this malignant transformation
process [27]; we hypothesize that nsPEF affects osteosar-
coma growth by targeting the Wnt/β-catenin signaling
pathway, a key signaling cascade involved in osteosar-
coma pathogenesis. Here, we investigate nsPEF-induced
changes on human osteosarcoma MG-63 cells to deter-
mine (1) the dose-effect relationship and time-effect re-
lationship of nsPEF on osteosarcoma cell growth and
apoptosis induction and (2) the nsPEF effect on the
osteosarcoma cell; osteoblast specific gene and protein
expression (receptor activator of NF-κB ligand (RANKL)
and osteoprotegerin (OPG)) were measured along with
the production of the pro-inflammatory cytokine tumor
necrosis factor α (TNF-α).

Materials and methods
Cell lines and cell culture
MG-63 human osteosarcoma cells were purchased from
the Cell Bank of Chinese Academy of Sciences (Shanghai,
China), cultured in Dulbecco’s Modified Eagle’s medium
(DMEM, Gibco Invitrogen, Carlsbad, CA, USA) supple-
mented with 10 % fetal bovine serum (FBS, SAFC Biosci-
ences, Lenexa, KS, USA), 100 units/mL penicillin, and 100
mg/mL streptomycin (Sigma, Aldrich, St. Louis, MO,
USA). Cells were kept in a humidified atmosphere of 5 %
CO2 at 37 °C.

The nsPEF treatment and dose-effect exam
The nsPEF treatment system was made by Leibniz Institute
for Plasma Science and Technology, Germany, and an
nsPEF generator with duration of 100 ns was applied. Var-
ied electric fields were released in a cell treatment system
from 10 to 60 kV/cm. Waveforms were monitored with a
digital phosphor oscilloscope (DPO4054, Tektronix, USA)
equipped with a high voltage probe (P6015A, Tektronix,
USA). MG-63 human osteosarcoma cells were harvested
with trypsin and resuspended in fresh DMEM with 10 %
FBS to a concentration of 5.0 × 106 cells/mL. Five hundred
microliters of cell suspension were placed into a sterile elec-
troporation cuvette (Bio-Rad, US, 0.1-cm gap). Cells were
exposed to 100 pulses at 0, 10, 20, 30, 40, 50, and 60 kV/cm
electric field strengths, respectively. Under the 50 kV/cm
electric field strength, the different pulse numbers were ap-
plied (0, 6, 12, 18, 24, and 30 pulses). The experiments were
repeated for three times. After incubation for 24 h, cells
were calculated by Cell Counting Kit-8 (CCK-8) assay
(Dojindo Laboratories, Kumamoto, Japan).

Measurement of apoptosis with TUNEL assay, Hoechst
stain, and flow cytometry
At different hours after nsPEF treatment (40 kV/cm, 30
pulses), the treated cells were incubated for 0, 3, 12, 24,
and 48 h to determine single-cell apoptosis using the assay
of terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick-end labeling (TUNEL) with In Situ Cell Death
Detection Kit (Millipore, USA) and Hoechst stain kit
(Beyotime, Shanghai, China) according to the manufac-
turer’s instruction, as previously described [14]. Under dif-
ferent electric field strengths and with different pulses,
the treated cells were incubated for 24 h to detect cell
apoptosis by Annexin V-FITC Apoptosis Detection Kit
(BD Biosciences). The cell cycle was also analyzed as
previously described [14].

Reverse-transcription polymerase chain reaction
Reverse-transcription polymerase chain reaction (RT-PCR)
was performed for assessing the expression of OPG,
RANKL, and TNF-α. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH), a house keeping gene, was used as
the internal control to calculate the comparative expression.
Total RNA was extracted using TRIzol reagent (Sangon,
Shanghai, China). The first strand cDNA synthesis from 1
mg of RNA was performed using SuperScript II Reverse
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Transcriptase (Invitrogen) and Oligo dT primer (Promega,
Madison, WI, USA) according to the manufacturer’s in-
structions. PCR was performed using the oligunucleotides
listed as the following. The specific primers were made
by Sangon, Shanghai, China, which were listed as the
following: RANK: F: CAGGAGACCTAGCTACAGA,
R: CAAGGTCAAGAGCATGGA, 95 °C, 1 min; 55 °C, 1
min; 72 °C, 1 min; OPG (264 bp): F: AGTGGGAGCA
GAAGACAT, R: TGGA CCTGGTTACCTATC, 95 °C,
1 min; 57 °C, 1 min; 72 °C, 1 min; TNF-α: F: GTG
GCAGTCTCAAACTGA, R: TATGGAAAGGGGCAC
TGA, 94 °C, 40 s; 55 °C, 40 s; 72 °C, 40 s; GAPDH:
F: CAG CGACACCCACTCCTC, R: TGAGGTCCA CC
ACCCTGT, 94 °C, 1 min; 57 °C, 1 min; 72 °C, 1 min.

Western blotting analysis
MG-63 cells (5 × 105) were plated and treated with dif-
ferent doses of nsPEF. Cells were then lysed with a lysis
buffer and then quantified. The equal amounts of pro-
tein were loaded, and electrophoresis was applied on a
12 % sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis mini-gel. Proteins were transferred to a PVDF
Fig. 1 NsPEF treatment parameter optimizing by CCK-8 and flow cytometr
values under different electric field strengths (a) and different pulse numbe
under different electric field strengths (b) and different pulse numbers (e) a
(c) and different pulse numbers (f). There was significant (P > 0.001) growth
and when pulse number was 30 (1D) vs control. The apoptotic cell rate is s
c) and when pulse number was 30 (e, f)
membrane and blocked with casein PBS and 0.05 %
Tween-20 for 1 h at room temperature. Membranes
were incubated with mouse monoclonal OPG, anti-OPG
(1:500), RANKL (1:200), TNF-α (1:300), GAPDH
(1:1000) antibodies which were purchased from Santa
Cruz (Santa Cruz Biotechnology, Santa Cruz, CA, USA).
Horseradish peroxidase-conjugated secondary antibody
was purchased from Zhongshan (Zhongshan Golden
Bridge, Beijing, China.). The protein expression was vi-
sualized with enhanced chemiluminescence reagent
(ECL kit, Amersham, UK).

Statistical analysis
Statistical significance was determined using Student’s t
test, using SPSS 13.0. P < 0.05 was considered to indi-
cate a statistically significant result.

Results
NsPEF parameter optimizing by CCK-8 and flow
cytometry
CCK-8 assay was used to calculate the IC50 values, and
flow cytometry was used to detect apoptosis. There were
y. After 24 h post nsPEF, CCK-8 assay was used to calculate the IC50
rs (d). The flow cytometry was used to detect apoptotic histograph
s well as the apoptotic cell rate under different electric field strengths
inhabitation when electric field strength was 30, 40, and 50 kV/cm (a)
ignificantly increased when electric field strength was 40–50 kV/cm (b,
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significant growth inhibition and apoptosis induction in
a dose-dependent manner following nsPEF treatment for
24 h. MG-63 cell growth was inhibited in an electric
field strength- and pulse number-dependent manner.
There was significant (P > 0.001) growth inhibition when
electric field strength was 40–50 kV/cm (Fig. 1a) and
when pulse number was 30 (Fig. 1d) vs control. Cells
were treated by nsPEF and then incubated for 24 h.
Apoptotic and dead cells were analyzed by flow cytometry
using dual staining with propidium iodide (PI) and Annexin
V-FITC. NsPEF induced viable apoptotic cells stained with
Annexin. The apoptotic cell rate is significantly increased
when electric field strength was 40–50 kV/cm (Fig. 1b, c)
and when pulse number was 30 (Fig. 1e, f).

Apoptosis induction at different times post nsPEF
treatment
To determine the effects of nsPEF on the induction of
apoptosis in MG-63 cells, the Annexin V assay was per-
formed. After 40 kV/cm and 30 pulses of nsPEF treat-
ment, the control and treated cells were stained with
Hoechst 33528 (Fig. 2a upper lane) and TUNEL (Fig. 2a
lower lane). The statistical analysis of the positive
Fig. 2 Apoptosis induction at different times post nsPEF treatment. After 4
cells were stained with Hoechst 33528 (a upper lane) and TUNEL (a lower la
and shown in (b) at different hours (0, 3, 12, 24, and 48 h). The apoptotic c
analyzed by flow cytometry (c) and statistically analyzed in (d), which indic
apoptotic cells were counted and shown in Fig. 2b at dif-
ferent hours (0, 3, 12, 24, and 48 h). Apoptotic cells in-
duced by nsPEF treatment were recognized by terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP
nick-end labeling (TUNEL), detecting DNA fragmenta-
tion by labeling the terminal end of nucleic acids. The
number or percentages of apoptotic cells detected fol-
lowing nsPEF treatment was shown in Fig. 2b. The
quantitative analysis showed the percentages of
apoptotic cells detected following nsPEF treatment
which were 2.6 % (0 h), 8.8 % (3 h), 21 % (12 h),
42 % (24 h), and 15 % (48 h) without nsPEF treat-
ment. The apoptotic induction 12 and 24 h post
nsPEF treatment showed significance (P = 0.01243,
0.00081, respectively, vs control). The cell cycle was
analyzed by flow cytometry (Fig. 2c) and statistically
analyzed in Fig. 2d, which indicates that nsPEF arrest
cells in the G0/G1 phase (Fig. 2d).

The effect of nsPEF on OPG/RANKL, TNF-α gene, and
protein expression
With 30 pulses, 24 h post treatment, PCR and western
blot were used to determine the different electric field
0 kV/cm and 30 pulses of nsPEF treatment, the control and treated
ne). The statistical analysis of the positive apoptotic cells were counted
ells were significant in 24 h post nsPEF treatment. The cell cycle was
ates that nsPEF arrest cells in the G0/G1 phase
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strengths on cell OPG/RANKL, TNF-α gene (Fig. 3a),
and the corresponding protein expression (Fig. 3b).
NsPEF significantly increased OPG transcription and
protein expression at 20–50 kV/cm (Fig. 3a, c). RANKL
was almost undetectable both in the control and
nsPEF-treated MG-63 cells (Fig. 3a, c). NsPEF
slightly down-regulated TNF-α (Fig. 3a, c). The OPG
is important in the regulation of bone formation.
PCR results showed that the nsPEF-treated cells
demonstrated a significantly up-regulation of OPG
transcription. Western blot analysis confirmed that
nsPEF stimulated osteoprotegerin protein production
in the MG-63 cells.

Discussion
The primary bone malignancy osteosarcoma is still a chal-
lenge for orthopedics. For patients who are not suitable for
radical resection, the minimal invasive ablation techniques
can be used as an alternative to surgery. NsPEF has been
proved to be a novel non-thermal ablation method which
can activate a protection immune response [21–23]. Ac-
cording to the Clinical Practice Guidelines in Oncology of
Fig. 3 The nsPEF effect on gene and protein expression. With 30 pulses, 24
different electric field strengths on cell OPG/RANKL, TNF-α gene (a), and pr
and protein expression at 20–50 kV/cm (a, c). RANKL was almost undetecta
slightly down-regulated TNF-α (a, d)
the National Comprehensive Cancer Network (NCCN),
local ablation can be used for curative or palliative intent,
either alone or in combination with immunotherapy or
chemotherapy [11]. The effect of systemic chemotherapy
may be enhanced by the physiological changes produced by
ablation [11]. Furthermore, ablation can sometimes be used
as a complement to surgery [13].
A number of studies have demonstrated that local ab-

lation is effective in osteosarcoma [28–30]. To our best
knowledge, the application of nsPEF in osteosarcoma
has never been reported. The bone-related tumor study
is extremely important because many solid tumors tend
to have metastasis in bones. The present study applies a
new ablation methodology in osteosarcoma and identi-
fies its molecular target. Our data suggest that nsPEF
had direct effects on osteosarcoma cells, including the
inhibition of tumor cell proliferation and induction of
apoptosis. These results are consistent with previous re-
ports. NsPEF inhibits cell proliferation and induces
apoptosis in tumor cells [11, 16].
The development of osteoclasts is controlled by cyto-

kine synthesized by osteoblasts like receptor activator
h post treatment, PCR and western blot were used to determine the
otein expression (b). NsPEF significantly increased OPG transcription
ble both in the control and nsPEF-treated MG-63 cells (a, d). NsPEF
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of NF-κB ligand (RANKL), osteoprotegerin (OPG), and
tumor necrosis factor α (TNF-α) [31].The extension of
the current study is the investigation of nsPEF’s effect
on bone resorption when nsPEF is in its ablation dos-
age. OPG is a member of the tumor necrosis factor
receptor family. It has multiple biological functions
such as regulation of bone turnover. OPG can block
the interaction between RANKL and the RANK recep-
tor [31]. NsPEF increased OPG expression in MG-63
in in vitro assays. Our data indicate that nsPEF up-
regulated the OPG expression. Bone remodeling can be
assessed by the relative ratio of OPG to RANKL [32].
NsPEF had no effect on RANKL expression. Defined as a
potent bone-resorbing factor, TNF-α is responsible for
stimulating bone resorption. TNF-α exerts its osteoclasto-
genic effect by activating NF-κB with RANKL [33]. Our
results show that in osteosarcoma MG-63, in addition to
apoptosis induction, nsPEF can regulate bone metabolism
through adjusting OPG/RANKL ratio.
TNF-α expression still needs further investigation due

to the weak expression. But, it is the key cytokine that
we assume which would change the local inflammatory
microenvironment in the ablation zone.

The limit of the current study
In this in vitro study, the MG-63 osteosarcoma cell line
is used as a model system. Therefore, results obtained
from cultured cells only gave hints for the nsPEF treat-
ment of osteosarcoma. The current results need to be
tested in an in vivo osteosarcoma model, e.g., MG-63
cell xenografts.

Conclusion
NsPEF can be considered as a potential therapeutic
intervention to suppress bone remodeling and osteo-
clast activity involved in osteosarcoma. Further in vivo
studies are required to optimize the dosing regimen of
nsPEF to fully study its antitumor potential in the bone
microenvironment.
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