518 research outputs found

    Imaging of photonic nanopatterns by scanning near-field optical microscopy

    Get PDF
    H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber and A. Dereu

    Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications

    Get PDF
    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.Yinlan Ruan, Liyun Ding, Jingjing Duan, Heike Ebendorff-Heidepriem, Tanya M. Monr

    Suspended core optical fibers for biological applications using UV wavelengths

    Get PDF
    We have demonstrated the use of suspended core optical fibers as dip sensors for biological applications based on fluorophores operating at UV wavelengths for the first time. In this paper, we have demonstrated the use of suspendedcore fibers to measure the fluorescence of 7-Amino-4-methylcoumarin (AMC), which is used as the transduction for the standard enzyme activity assay of PC6, a biomarker of women’s uterine fertility. Concentrations down to 500 nM have been measured using a 2.1 μm core diameter fiber.S. C. Warren-Smith, G. Nie, J. Kobelke, R. Kostecki, L. A. Salamonsen, T. M. Monrohttp://www.ofs-22.org/site

    Trans* and gender variant citizenship and the state in Norway

    Get PDF
    The last decade has seen the expansion of trans identities that are gender queer, non-binary, androgynous, or multiply-sexed and gendered in Western Europe. These developments mark a shift from a uniformly gender-binaried system to one that encompasses some degree of gender pluralism, as reflected to an extent in policy changes in some European countries. However, gender binarism is still prevalent. This article uses the case of Norway to demonstrate a contrast between the citizenship statuses afforded to transsexual men and women, and the lack of citizenship rights that people with non-binary identities, and other gender-variant people who are not diagnosed as transsexual, face. The article addresses the historical role of the Norwegian state in perpetuating gender binaries, in key areas such as identity recognition. It then explores the ways in which Norwegian social policy is changing towards more trans-sensitive positions

    Localised hydrogen peroxide sensing for reproductive health

    Get PDF
    Session 10 - Chemical Sensors and Biosensors IIThe production of reactive oxygen species (ROS) is known to affect the developmental competence of embryos. Hydrogen peroxide (Hâ‚‚Oâ‚‚) an important reactive oxygen species, is also known to causes DNA damage and defective sperm function. Current techniques require incubating a developing embryo with an organic fluorophore which is potentially hazardous for the embryo. What we need is a localised ROS sensor which does not require fluorophores in solution and hence will allow continuous monitoring of Hâ‚‚Oâ‚‚ production without adversely affect the development of the embryo. Here we report studies on such a fibre-based sensor for the detection of Hâ‚‚Oâ‚‚ that uses a surface-bound aryl boronate fluorophore carboxyperoxyfluor-1(CPF1). Optical fibres present a unique platform due to desirable characteristics as dip sensors in biological solutions. Attempts to functionalise the fibre tips using polyelectrolyte layers and (3-aminopropyl)triethoxysilane (APTES) coatings resulted in a limited signal and poor fluorescent response to Hâ‚‚Oâ‚‚ due to a low tip surface density of the fluorophore. To increase the surface density, CPF1 was integrated into a polymer matrix formed on the fibre tip by a UV-catalysed polymerisation process of acrylamide onto a methacrylate silane layer. The polyacrylamide containing CPF1 gave a much higher surface density than previous surface attachment methods and the sensor was found to effectively detect Hâ‚‚Oâ‚‚. Using this method, biologically relevant concentrations of Hâ‚‚Oâ‚‚ were detected, enabling remote sensing studies into ROS releases from embryos throughout early development.Malcolm S Purdey, Erik P Schartner, Melanie L Sutton-McDowall, Lesley J Ritter, Jeremy G Thompson, Tanya M Monro, and Andrew D Abel

    Excitability and synaptic transmission in the enteric nervous system: Does diet play a role?

    Full text link
    © Springer International Publishing Switzerland 2016. Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption. The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission. Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming

    Equivalent glycemic load (EGL): a method for quantifying the glycemic responses elicited by low carbohydrate foods

    Get PDF
    BACKGROUND: Glycemic load (GL) is used to quantify the glycemic impact of high-carbohydrate (CHO) foods, but cannot be used for low-CHO foods. Therefore, we evaluated the accuracy of equivalent-glycemic-load (EGL), a measure of the glycemic impact of low-CHO foods defined as the amount of CHO from white-bread (WB) with the same glycemic impact as one serving of food. METHODS: Several randomized, cross-over trials were performed by a contract research organization using overnight-fasted healthy subjects drawn from a pool of 63 recruited from the general population by newspaper advertisement. Incremental blood-glucose response area-under-the-curve (AUC) elicited by 0, 5, 10, 20, 35 and 50 g CHO portions of WB (WB-CHO) and 3, 5, 10 and 20 g glucose were measured. EGL values of the different doses of glucose and WB and 4 low-CHO foods were determined as: EGL = (F-B)/M, where F is AUC after food and B is y-intercept and M slope of the regression of AUC on grams WB-CHO. The dose-response curves of WB and glucose were used to derive an equation to estimate GL from EGL, and the resulting values compared to GL calculated from the glucose dose-response curve. The accuracy of EGL was assessed by comparing the GL (estimated from EGL) values of the 4 doses of oral-glucose with the amounts actually consumed. RESULTS: Over 0–50 g WB-CHO (n = 10), the dose-response curve was non-linear, but over the range 0–20 g the curve was indistinguishable from linear, with AUC after 0, 5, 10 and 20 g WB-CHO, 10 ± 1, 28 ± 2, 58 ± 5 and 100 ± 6 mmol × min/L, differing significantly from each other (n = 48). The difference between GL values estimated from EGL and those calculated from the dose-response curve was 0 g (95% confidence-interval, ± 0.5 g). The difference between the GL values of the 4 doses of glucose estimated from EGL, and the amounts of glucose actually consumed was 0.2 g (95% confidence-interval, ± 1 g). CONCLUSION: EGL, a measure of the glycemic impact of low-carbohydrate foods, is valid across the range of 0–20 g CHO, accurate to within 1 g, and at least sensitive enough to detect a glycemic response equivalent to that produced by 3 g oral-glucose in 10 subjects

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Dieting practices, weight perceptions, and body composition: A comparison of normal weight, overweight, and obese college females

    Get PDF
    BACKGROUND: Of concern to health educators is the suggestion that college females practice diet and health behaviors that contradict the 2005 dietary guidelines for Americans. In this regard, there remain gaps in the research related to dieting among college females. Namely, do normal weight individuals diet differently from those who are overweight or obese, and are there dieting practices used by females that can be adapted to promote a healthy body weight? Since it is well recognized that females diet, this study seeks to determine the dieting practices used among normal, overweight, and obese college females (do they diet differently) and identify dieting practices that could be pursued to help these females more appropriately achieve and maintain a healthy body weight. METHODS: A total of 185 female college students aged 18 to 24 years participated in this study. Height, weight, waist and hip circumferences, and skinfold thickness were measured to assess body composition. Surveys included a dieting practices questionnaire and a 30-day physical activity recall. Participants were classified according to body mass index (BMI) as normal weight (n = 113), overweight (n = 35), or obese (n = 21). Data were analyzed using JMP IN® software. Descriptive statistics included means, standard deviations, and frequency. Subsequent data analysis involved Pearson X(2 )and one-way analysis of variance with comparison for all pairs that were significantly different using Tukey-Kramer honestly significant difference test. RESULTS: Outcomes of this study indicate the majority of participants (83%) used dieting for weight loss and believed they would be 2% to 6% greater than current weight if they did not diet; normal weight, overweight, and obese groups perceived attractive weight to be 94%, 85%, and 74%, respectively, of current weight; 80% of participants reported using physical activity to control weight, although only 19% exercised at a level that would promote weight loss; only two of 15 dieting behaviors assessed differed in terms of prevalence of use among groups, which were consciously eating less than you want (44% normal weight, 57% overweight, 81% obese) and using artificial sweeteners (31% normal weight and overweight, 5% obese); and the most prevalent explicit maladaptive weight loss behavior was smoking cigarettes (used by 9% of participants) and most unhealthy was skipping breakfast (32%). CONCLUSION: Collectively, results indicate female college students, regardless of weight status, would benefit from open discussions with health educators regarding healthy and effective dieting practices to achieve/maintain a healthy body weight. The results are subject to replication among high school, middle-aged, and older females
    • …
    corecore