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ABSTRACT 
The production of reactive oxygen species (ROS) is known to affect the developmental competence of embryos.
Hydrogen peroxide (H2O2) an important reactive oxygen species, is also known to causes DNA damage and
defective sperm function.  Current techniques require incubating a developing embryo with an organic
fluorophore which is potentially hazardous for the embryo.  What we need is a localised ROS sensor which does
not require fluorophores in solution and hence will allow continuous monitoring of H2O2 production without 
adversely affect the development of the embryo.  Here we report studies on such a fibre-based sensor for the 
detection of H2O2 that uses a surface-bound aryl boronate fluorophore carboxyperoxyfluor-1(CPF1).  Optical
fibres present a unique platform due to desirable characteristics as dip sensors in biological solutions.  Attempts 
to functionalise the fibre tips using polyelectrolyte layers and (3-aminopropyl)triethoxysilane (APTES) coatings 
resulted in a limited signal and poor fluorescent response to H2O2 due to a low tip surface density of the 
fluorophore.  To increase the surface density, CPF1 was integrated into a polymer matrix formed on the fibre tip 
by a UV-catalysed polymerisation process of acrylamide onto a methacrylate silane layer.  The polyacrylamide 
containing CPF1 gave a much higher surface density than previous surface attachment methods and the sensor 
was found to effectively detect H2O2.  Using this method, biologically relevant concentrations of H2O2 were 
detected, enabling remote sensing studies into ROS releases from embryos throughout early development. 

INTRODUCTION
Reactive oxygen species (ROS) produced in reproductive cells are known to cause DNA damage, resulting in 
defective sperm function[1-3] and compromised embryo development.[4]  Hydrogen peroxide (H2O2) is an 
important ROS in reproductive health, and its detection is vital for monitoring embryo health and the diagnosis
of male infertility.  H2O2 is typically detected in cells using a compound (fluorophore) that fluoresces on its
reaction with ROS.[5, 6]  However, the use of such probes during in vitro fertilisation (IVF) applications poses 
significant scientific and ethical problems.  The effect of these compounds on embryo development is unknown, 
and as such direct contact is not advisable.  Hence, non-invasive and non-toxic diagnostics are highly sought 
after by clinical laboratories.  One possible alternative to solution-based measurements is to chemically attach 
the fluorophore to a surface to allow localised measurement without releasing the fluorophore.[7-9]  Thus, by 
immobilising a H2O2 sensitive fluorophore peroxyfluor-1 (PF1) to glass surfaces, detection of H2O2 can be 
performed without potential detrimental effects on the embryo.   
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Aryl boronates such as PF1 are known to fluoresce on reaction with H2O2 [10-12] and we have also recently 
demonstrated that PF1 and other variants are particularly effective probes for detection of H2O2 in human 
spermatozoa [13] and bovine oocytes [14]. This paper reports the attachment of synthetic carboxy peroxyfluor-1 
(CPF1) and N-hydroxysuccinimide CPF1 (NHS-CPF1) to confocal microscope slides and optical fibres for 
remote sensing of H2O2.  Both direct covalent attachment of the fluorophore to the glass surface, as well as the 
attachment of a polymer layer with the fluorophore embedded are demonstrated below. 

METHODS 

Materials 
All chemicals were purchased from Sigma-Aldrich unless otherwise stated.  CPF1 and PF1-CONHS were 
synthesised by known procedures.[11, 13]  Bovine IVF medium was prepared using VitroFert from IVF Vet 
Solutions (Adelaide, Australia); 4 mg/ml fatty acid free BSA (ICPBio Ltd; Auckland, New Zealand); 10 IU/ml 
heparin, 25 μM penicillamine, 12.5 μM hypotaurine and 1.25 μM epinephrine.  Bis(acrylamide) was purchased 
from Polysciences (Warrington, PA).  HPLC grade toluene was purchased from Southern Cross Science 
(Adelaide, AUS), and dried using a Puresolv solvent purifier from Innovative Technology (Amesbury, MA).  
HPLC grade methanol and acetonitrile was purchased from Scharlau.  200 µm core diameter multimode fibre 
was purchased from Thorlabs (USA).  Milli-Q water was purified by a Millipore purification system (Billerica, 
MA).  Glass bottom, confocal microscope dishes were purchased from Cell E&G (Houston TX). 

Fluorescence Characterisation 
The response of CPF1 to H2O2 was measured using a Biotek Synergy H4 plate reader.  CPF1 was made up to a 
final concentration of 10 µM in 20 mM HEPES buffer at pH 7.4.  H2O2 was added to give final concentrations 
of 0, 10, 25, 50, 75 and 100 µM.  Absorption and fluorescence spectra were measured after 40 min of incubation 
at 37°C.   

Surface Attachment Protocols 
Preparation of Confocal Microscope Dishes 

Confocal microscope dishes were washed with Milli-Q water before being sonicated in HPLC grade methanol 
for 20 min and dried under vacuum for 1 h.  Stock solutions of polyallylamine hydrochloride and polyacrylic 
acid were made up to 1 mg/mL in a 1 M sodium chloride solution.  1 mL of polyallylamine hydrochloride stock 
was carefully pipetted onto the exposed glass surface of the cleaned confocal dish and left for 15 min.  The 
polyallylamine hydrochloride solution was decanted, and the surface carefully rinsed 4x with 2.5 mL of Milli-Q 
water.  1 mL of polyacrylic acid stock was then pipetted onto the glass surface and left for 15 min.  After 
decanting, the glass was rinsed with a further 4x 2.5 mL of Milli-Q water.  A further layer of polyallylamine 
hydrochloride was deposited and rinsed as previously described.  1 mL of an aqueous solution of EDC•HCl (1 
mM), NHS (1 mM) and CPF1 (10 µM) was pipetted onto the glass and left for 1 h.  The excess was decanted 
and the dish washed with 4x 2.5 mL of Milli-Q water and placed under vacuum for 12 h to remove excess water. 

5 µL droplets of Bovine IVF medium with increasing concentrations of H2O2 (0-500 µM) were added to the 
plates and covered with paraffin oil (Merck; Darmstadt, Germany) to eliminate evaporation, then incubated at 
38.5 °C for 1 h.  The fluorescence of individual media drops on the plates was captured using an Olympus 
(Tokyo) Fluoview FV10i (ex = 470 nm and em = 500-600 nm), before being imaged on the Amersham Typhoon 
imager as per below. 

The fluorescence generated on the glass slides before and on reaction with H2O2 was measured using a Typhoon 
TM 8600 variable mode imager from Amersham Bioscience.  Excitation was performed using a 488 nm laser, 
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and the emission measured through a 520 nm filter with a 40 nm bandwidth.  Sensitivity was set to 100 µm per 
pixel, and photomultiplier tube voltage was 500 V.  Average fluorescence intensity per mm2 was collected from 
100 data points and the error was calculated to give the standard error of the mean (SE). 
 

Polyelectrolyte Deposition on Optical Fibre Tips 

Stock solutions of polyallylamine hydrochloride, polyacrylic acid (1 mg/mL in a 1 M sodium chloride) and a 
100 µM CPF1-NHS solution with 1 mg/mL polyallylamine hydrochloride in 1M sodium chloride were 
prepared. The freshly cleaved tip of a length of multi-mode fibre (200µm) was immersed in the polyallylamine 
hydrochloride solution for 5 min, rinsed in Milli-Q water and then re-immersed in polyacrylic acid for 5 min.  
This process was repeated 8 times to give alternating layers of polyallylamine hydrochloride and polyacrylic 
acid.  The fibre tip was finally immersed in the polyallylamine hydrochloride solution containing CPF1-NHS for 
5 min and then washed and immersed in polyacrylic acid for 5 min.  This process was repeated to give 3 layers 
of polyallylamine hydrochloride containing CPF1-NHS on the fibre tip. 

Silane Functionalisation on Optical Fibre Tips 

Multi-mode fibre (200 µm diameter) was cut to length and the end face was cleaved in order to provide a clean 
surface.  Under a dry nitrogen atmosphere, the fibre tips were washed with ethanol followed by dry toluene for 
30 min.  The fibre tips were then functionalised by placing them in a 5% mixture of (3-
aminopropyl)triethoxysilane (APTES) in toluene before a further wash with dry toluene.  The fibre was 
removed from nitrogenous atmosphere and washed with HPLC grade acetonitrile.  The tip was immersed in a 
mixture of EDC•HCl (1 mM), NHS (1 mM) and CPF1 (100 µM) in HPLC grade acetonitrile.  The fibre tip was 
then removed, washed with further acetonitrile and Milli-Q water for use on an optical fibre setup. 

Polyacrylamide Photopolymerisation on Optical Fibre Tips 

A solution of 3-(trimethoxysilyl)propyl methacrylate in pH 3.5 adjusted Milli-Q water was mixed and sonicated 
until clear.  Multi-mode fibre (200 µm diameter) was cut to length and the end face was cleaved in order to 
provide a clean surface, then immersed in the methacrylate solution for 1 h.  The fibre tip was then dried under 
N2, rinsed with Milli-Q water and dried under N2 again.  The distal end of the fibre was then coupled into the 
fibre setup shown in Figure 1 below.  A monomeric stock solution comprising of 3% bisacrylamide, 27% 
acrylamide and 70% pH 6.5 phosphate buffer solution was dissolved under sonication.  CPF1-NHS (0.2 mg) 
was dissolved in the monomeric solution (400 µL) with triethylamine (10 µL) and 200 µL of this was pipetted 
into a small Eppendorf tube.  The functionalised fibre tip was immediately immersed in this solution, and 
irradiated under UV light for 2s to form a polymeric coating on the fibre tip. 

 Fibre Setup 
A schematic of the optical setup is shown in Figure 1, for both photopolymerisation of the polymer using the 
405 nm source, and optical measurements using the 473 nm source. 
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Figure 2. (A) Absorption and emission spectra of CPF1 in 20 mM HEPES solution when treated with 0, 10, 25, 50, 75 and 
100 µM H2O2.  (B) Fluorescence over 40 min of CPF1 treated with 100 µM H2O2.  Excitation was at 450 nm and emission at 
520 nm with a band pass of 20 nm. 

 

The sensitivity of surface-bound CPF1 to H2O2 was next defined.  Dishes were again functionalised with CPF1 
and 5 µL drops of bovine IVF media containing 0, 10, 50, 100 or 500 µM of H2O2, were added and overlaid with 
paraffin oil.  These dishes were imaged using a typhoon imager (Figure 4A) and also a confocal microscope 
(Figure 4B-E).  The results clearly show that higher concentrations of H2O2 lead to a greater fluorescent 
response from the surface bound CPF1.  This indicates that, while bound to a surface, CPF1 is effective for the 
detection of H2O2 in IVF media. 

 

Figure 3. Characterisation of glass slide functionalised with CPF1 on polyelectrolytes.  The above data is an analysis of the 
fluorescence measured by typhoon imaging. 
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Figure 4. A glass slide functionalised with CPF1 has several droplets with differing concentrations of H2O2. (A)Typhoon 
image with concentrations increasing from left to right, top to bottom.  Confocal microscope images corresponding to these 
droplets show increasingly bright fluorescence for increased H2O2: (B) 0µM (C) 10µM (D) 50µM (E) 100µM. 

Attachment Methods of CPF1 to Fibre Tip 
Having established that CPF1 can detect H2O2 on a glass surface, three polymer and silane functionalisation 
methods were trialled for immobilising CPF1 to a fibre tip.  In this case CPF1-NHS was used in place of CPF1, 
an activated ester which directly attaches to amines on the surface.  Polyelectrolyte deposition was first 
investigated (see Scheme 1), as per attaching CPF1 to confocal glass slides.  Positively charged polymer 
polyallylamine hydrochloride and negatively charged polyacrylic acid were immobilised to the surface of the 
cleaved fibre tip by electrostatic attraction.  15 layers were deposited on fibre tip, a larger number compared 
with the 3 layers on confocal slides, to ensure a dense surface coverage for increased fluorophore signal.  These 
polymers are not covalently bound to the surface, but are held in place by electrostatic attraction, that are 
compatible with a biological pH.[15] 

The fibres functionalised with CPF1 were then coupled into a 473 nm light source for detection of any increase 
in fluorescence on exposure to H2O2.  The tip of the fibre was dipped into 1 mM H2O2 and the fluorescence 
monitored over 20 min, with the results shown in Figure 5.  No significant increase in fluorescence was apparent 
over the 20 min, indicating that the majority of the observed signal is background fluorescence on the glass 
fibre, and thus a low surface density of the CPF1 on the fibre tip.  By comparison, the use of polyelectrolytes on 
glass slides (as described above) was effective at detecting an increase in H2O2.  This difference could be due to 
the higher efficiency of the confocal microscope and typhoon imager for collecting fluorescence signal, as well 
as the lower power setting used in fibre to minimise photobleaching.  It is clear that while polyelectrolyte 
deposition affords an acceptable level of CPF1 on the glass confocal microscope slides, there is insufficient 
CPF1 deposited on a fibre tip for H2O2 sensing. 
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Scheme 1.  Representative diagram of the deposition of poly electrolyte layers polyallylamine hydrochloride and 
polyacrylic acid to a glass surface.  The process is repeated to build up multiple layers of alternating charge, 
with functionalisation of CPF1 to the top layers. The final three deposited layers of polyallylamine 
hydrochloride contained CPF1-NHS 
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Figure 5. Poly electrolyte coating with CPF1 attached, in 1 mM H2O2 for 20 min.  The lack of fluorescent increase indicates 
the poor signal on the fibre tip. 

The second method involved depositing an amine-functional silane layer on the fibre tip (Scheme 2).  This was 
achieved by dipping the fibre tip into a mixture of APTES under anhydrous conditions to give even surface 
coverage, before attaching CPF1-NHS.  The fibre was then coupled to a 473 nm laser and the fluorescence 
measured over 20 min when dipped into a 1 mM solution of H2O2 in bovine IVF media.  Figure 6 shows that the 
fluorescence increases when CPF1 bound to an APTES monolayer on the fibre tip reacts with H2O2.  A slight 
increase in the fluorescence maximum at 520 nm is apparent, but this increase is insufficient for the detection of 
in vitro concentrations and is comparatively poor relative to CPF1 in solution (Figure 2).   
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Scheme 2.  Surface functionalisation of CPF1-NHS with APTES.  Deposition of APTES to the fibre surface is performed in 
anhydrous conditions to avoid polymerisation and create an even monolayer. 
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Figure 6. APTES-coated fibre tip gives poor increase in fluorescence to 1 mM H2O2.   

The third method of functionalisation involved forming a poly(acrylamide) matrix containing CPF1 on the glass 
surface (Scheme 3).  A silane monolayer was first formed on the fibre tip using an aqueous solution of 3-
(trimethoxysilyl)propyl acrylate.  The fibre tip was then dipped into a solution of acrylamide/bisacrylamide 
while 405 nm light was coupled into the fibre catalysing polymerisation to the silane acrylate on the surface.  
The thus formed cross-linked poly(acrylamide) effectively traps the fluorophore in the polymer matrix, while 
allowing small molecules such as H2O2 to diffuse through it.  The fibre tip was then washed, and 473 nm light 
was coupled into the fibre to measure the fluorescence of CPF1.   

Figure 7 shows the increase of fluorescence over 20 min when the coated fibre tip was immersed in 1mM H2O2. 
A near linear increase can be seen in the fluorescence maximum over 20 min (Figure 7B), indicating a kinetic 
response of CPF1 to H2O2 similar to the initial solution-based studies (Figure 2B).  It is clear that the 
poly(acrylamide) coating method gives a higher surface density of CPF1 on the fibre tip compared to the 
polyelectrolyte (Figure 5) and APTES (Figure 6) functionalisation methods.  Furthermore, these fibres 
effectively sense H2O2 and have potential for use as a dip-sensor for H2O2 near embryos.   

 

Optical Fibre Surface Optical Fibre Surface Optical Fibre Surface
APTES

Proc. of SPIE Vol. 9506  950614-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/12/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

 

Scheme 3.  Formation of a poly(acrylamide) matrix with covalently linked CPF1.  A silane layer is deposited with 
propylacrylate functionality.  The polymer is then formed on the tip by immersing the fibre tip in an aqueous solution of 
CPF1-NHS in acrylamide/bisacrylamide and irradiating through the fibre with a 405 nm laser source. 
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Figure 7. The response of CPF1 in poly(acrylamide) to 1 mM H2O2 (ex. 473 nm laser): (A) Overlaid spectra over 20 min of 
exposure to H2O2.  (B) Intensity change over time at emission peak 520nm.  The initial drop in fluorescence at 0s represents 
the fibre tip being dipped into solution; the fluorescence is quenched slightly in water compared with air. 

 

CONCLUSION 
CPF1 was demonstrated to effectively detect H2O2 when bound to a surface by either polyelectrolyte deposition 
on glass slides, or in poly(acrylamide) on an optical fibre tip.  This fibre-based sensor shows promising results 
for remote H2O2 sensing, as the poly(acrylamide) coating method gave a high surface density of fluorophore.  
Use of this fibre coating method is now being investigated for non-invasive detection of oxidative stress near 
embryos. 
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