10,815 research outputs found

    Bond-Propagation Algorithm for Thermodynamic Functions in General 2D Ising Models

    Full text link
    Recently, we developed and implemented the bond propagation algorithm for calculating the partition function and correlation functions of random bond Ising models in two dimensions. The algorithm is the fastest available for calculating these quantities near the percolation threshold. In this paper, we show how to extend the bond propagation algorithm to directly calculate thermodynamic functions by applying the algorithm to derivatives of the partition function, and we derive explicit expressions for this transformation. We also discuss variations of the original bond propagation procedure within the larger context of Y-Delta-Y-reducibility and discuss the relation of this class of algorithm to other algorithms developed for Ising systems. We conclude with a discussion on the outlook for applying similar algorithms to other models.Comment: 12 pages, 10 figures; submitte

    High rate locally-correctable and locally-testable codes with sub-polynomial query complexity

    Full text link
    In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length nn, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})). Previously such codes were known to exist only with Ω(nβ)\Omega(n^{\beta}) query complexity (for constant β>0\beta > 0), and there were several, quite different, constructions known. Our codes are based on a general distance-amplification method of Alon and Luby~\cite{AL96_codes}. We show that this method interacts well with local correctors and testers, and obtain our main results by applying it to suitably constructed LCCs and LTCs in the non-standard regime of \emph{sub-constant relative distance}. Along the way, we also construct LCCs and LTCs over large alphabets, with the same query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})), which additionally have the property of approaching the Singleton bound: they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large alphabet error-correcting code to further be an LCC or LTC with exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})) query complexity does not require any sacrifice in terms of rate and distance! Such a result was previously not known for any o(n)o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters

    Nuclear-spin relaxation of 207^{207}Pb in ferroelectric powders

    Full text link
    Motivated by a recent proposal by O. P. Sushkov and co-workers to search for a P,T-violating Schiff moment of the 207^{207}Pb nucleus in a ferroelectric solid, we have carried out a high-field nuclear magnetic resonance study of the longitudinal and transverse spin relaxation of the lead nuclei from room temperature down to 10 K for powder samples of lead titanate (PT), lead zirconium titanate (PZT), and a PT monocrystal. For all powder samples and independently of temperature, transverse relaxation times were found to be T21.5T_2\approx 1.5 ms, while the longitudinal relaxation times exhibited a temperature dependence, with T1T_1 of over an hour at the lowest temperatures, decreasing to T17T_1\approx 7 s at room temperature. At high temperatures, the observed behavior is consistent with a two-phonon Raman process, while in the low temperature limit, the relaxation appears to be dominated by a single-phonon (direct) process involving magnetic impurities. This is the first study of temperature-dependent nuclear-spin relaxation in PT and PZT ferroelectrics at such low temperatures. We discuss the implications of the results for the Schiff-moment search.Comment: 6 pages, 4 figure

    Tunable Double Negative Band Structure from Non-Magnetic Coated Rods

    Full text link
    A system of periodic poly-disperse coated nano-rods is considered. Both the coated nano-rods and host material are non-magnetic. The exterior nano-coating has a frequency dependent dielectric constant and the rod has a high dielectric constant. A negative effective magnetic permeability is generated near the Mie resonances of the rods while the coating generates a negative permittivity through a field resonance controlled by the plasma frequency of the coating and the geometry of the crystal. The explicit band structure for the system is calculated in the sub-wavelength limit. Tunable pass bands exhibiting negative group velocity are generated and correspond to simultaneously negative effective dielectric permittivity and magnetic permeability. These can be explicitly controlled by adjusting the distance between rods, the coating thickness, and rod diameters

    Maximum likelihood drift estimation for a threshold diffusion

    Get PDF
    We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted Oscillating Brownian motion.For this continuously observed diffusion, the maximum likelihood estimator coincide with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations

    Does Scientific Progress Consist in Increasing Knowledge or Understanding?

    Get PDF
    Bird argues that scientific progress consists in increasing knowledge. Dellsén objects that increasing knowledge is neither necessary nor sufficient for scientific progress, and argues that scientific progress rather consists in increasing understanding. Dellsén also contends that unlike Bird’s view, his view can account for the scientific practices of using idealizations and of choosing simple theories over complex ones. I argue that Dellsén’s criticisms against Bird’s view fail, and that increasing understanding cannot account for scientific progress, if acceptance, as opposed to belief, is required for scientific understanding

    Modelling of impaired cerebral blood flow due to gaseous emboli

    Get PDF
    Bubbles introduced to the arterial circulation during invasive medical procedures can have devastating consequences for brain function but their effects are currently difficult to quantify. Here we present a Monte-Carlo simulation investigating the impact of gas bubbles on cerebral blood flow. For the first time, this model includes realistic adhesion forces, bubble deformation, fluid dynamical considerations, and bubble dissolution. This allows investigation of the effects of buoyancy, solubility, and blood pressure on embolus clearance. Our results illustrate that blockages depend on several factors, including the number and size distribution of incident emboli, dissolution time and blood pressure. We found it essential to model the deformation of bubbles to avoid overestimation of arterial obstruction. Incorporation of buoyancy effects within our model slightly reduced the overall level of obstruction but did not decrease embolus clearance times. We found that higher blood pressures generate lower levels of obstruction and improve embolus clearance. Finally, we demonstrate the effects of gas solubility and discuss potential clinical applications of the model

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Planar separators and the Euclidean norm

    Full text link
    corecore