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Abstract. Bubbles introduced to the arterial circulation during invasive medical

procedures can have devastating consequences for brain function but their effects are

currently difficult to quantify. Here we present a Monte-Carlo simulation investigating

the impact of gas bubbles on cerebral blood flow. For the first time, this model

includes realistic adhesion forces, bubble deformation, fluid dynamical considerations,

and bubble dissolution. This allows investigation of the effects of buoyancy, solubility,

and blood pressure on embolus clearance.

Our results illustrate that blockages depend on several factors, including the number

and size distribution of incident emboli, dissolution time and blood pressure. We found

it essential to model the deformation of bubbles to avoid overestimation of arterial

obstruction. Incorporation of buoyancy effects within our model slightly reduced the

overall level of obstruction but did not decrease embolus clearance times. We found

that higher blood pressures generate lower levels of obstruction and improve embolus

clearance. Finally, we demonstrate the effects of gas solubility and discuss potential

clinical applications of the model.

1. Introduction

Bubbles entering the cerebral circulation can have devastating consequences for brain

function, and are most commonly either created de novo during decompression sickness,

or inadvertently introduced to the circulation during cardiovascular interventions,

particularly open heart surgery featuring cardio-pulmonary bypass. Previous animal

studies have shown that a rapid influx of large volumes of air has potential to be fatal

[Weenink et al., 2012], and in humans it is speculated that introduction of smaller

bubbles could be a potential cause of post-operative neurocognitive decline following

cardiac surgery [Barak and Katz, 2005].

Once lodged in the cerebral arteries, bubbles obstruct blood flow causing

downstream tissue to be starved of oxygen and pressure changes to be induced in the
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surrounding vessels. Since brain tissue is particularly sensitive to a shortage of oxygen

(hypoxia), arterial blockages can lead rapidly to irreversible biochemical changes and

cell death [Lipton, 1999]. In recent years there has been increasing clinical interest in

understanding the relationship between impaired embolus clearance, systemic blood

pressure, and cerebral autoregulation [Screiber et al., 2009, Caplan and Hennerici,

1998]. Improved modelling approaches present new possibilities for examining such

relationships with a view to guiding strategies to improve patient outcome.

To attempt to quantify the effects of solid and gaseous emboli of varying size, we

previously developed a minimal model to forecast the impact of embolisation on blood

flow [Chung et al., 2007, Hague and Chung, 2009]. Our previous model featured a very

limited description of embolisation, in which emboli were assumed to behave as rigid

spheres that block vessels of similar size. The model had a highly simplified description

of the fluid dynamics, assuming that all pressure was dropped over the arterioles, and

that flow at each bifurcation was governed only by the number of arterioles receiving

flow downstream. In this paper, we present a superior model describing motion of

deformable gas bubbles through the vasculature, which includes the effects of buoyancy,

solubility and blood pressure.

There are a number of differences between solid emboli (which may be almost

incompressible and rigid) and gaseous emboli that compress and distort easily [Branger

and Eckmann, 1999]. These differences have potential to affect the locations in the

vasculature where emboli become lodged and to influence dissolution time. Gaseous

emboli have a propensity to deform as they move through the vasculature and only

block arteries when the surface area in contact with the walls generates sufficient static

friction (stiction) to oppose motion [Suzuki and Eckmann, 2003]. Another significant

difference between solid and gaseous emboli is the high buoyancy of gas bubbles, which

has potential to influence embolus trajectory. This paper goes beyond previous work

by introducing a number of extensions that are needed to properly model the motion

of gaseous emboli through the vascular tree: (1) the emboli are deformable (2) an

approximation for stiction is included, (3) an iterative fluid dynamical analysis is carried

out to estimate the pressure drop in the whole tree, and (4) an estimate of buoyancy

effects is included.

The aim of this paper is to provide a model of gas embolisation to help to understand

the relationship between fluid dynamical factors, the accumulation of embolic blockages,

and impaired bubble clearance for future use in real-time modelling of embolisation.

For the first time, we include the effects of blood pressure, embolus buoyancy, bubble

deformation, and a realistic parameterisation for the stiction and dissolution of emboli.

We begin by introducing our model (section 2). Example results showing the impact of

buoyancy, blood pressure and solubility on blockage can be found in section 3. We then

consider possible clinical applications in section 4 and provide a summary of our results

(section 5).
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Figure 1. Schematic of a deformable embolus in a vessel, highlighting the mechanisms

that lead a gas bubble to block an artery. Blood pressure leads to a force, which is

opposed by stiction. When the limiting stiction is larger than the force on the bubble

from the blood, the artery becomes blocked.

2. Model

2.1. Bifurcating tree

At bifurcations, the radii of parent and daughter vessels are related by the equation,

rγp = rγdA + rγdB (1)

where we set the bifurcation exponent γ = 3 to be consistent with Murray’s law [Murray,

1926a,b] (for information on recent work, see e.g. Fung [1997], Zamir [2000]), rp is the

radius of the parent vessel, and rdA and rdB are the radii of the daughter vessels. We

assume a symmetric tree with rdA = rdB = rd, taking the radius of the root node to

be 0.5 mm. Therefore, at each level of the tree, rd = (2)−1/3rp, or in terms of the

level, i, of the tree, ri = 2−i/3r0 where i = 0 is the root node of radius r0. The tree

used in the example simulations presented in this paper comprises 18 levels, extending

from a trunk radius of 0.5 mm to 9.84 µm arterioles. The number of levels and the

diameter of the root node can be adjusted to suit a particular clinical application. In

the following, the root node of the tree was assumed to be 1 mm in diameter, as this is

similar to the minimum diameter vessel that can be imaged using Magnetic Resonance

Angiography (i.e. the topology of larger vessels could be modelled based on imaging

data). For ultrasound embolus detection applications the radius of the root node should

be adjusted to match the radius of the insonated vessel (typically 2.5 mm for Middle

Cerebral Artery insonation [Chung et al., 2006, Banahan et al., 2012]). The model of a

bifurcating tree for vessels of less than 1 mm is justified by analysis of high-resolution

images of the human cortex [Cassot et al., 2006], which reveal that 94% of branches in

the cerebral vasculature consist of bifurcations ‡. Following West, the lengths of the

vessels in our model were taken to be proportional to their radii (l ∝ r) [West et al.,

1997].

2.2. Gaseous emboli

Gaseous emboli differ from solid thrombus and plaque since they are deformable and

rapidly dissolve. To incorporate the effects of deformability and stiction we assume

‡ Of the remaining nodes, 4% are trifurcations, 1% simple nodes and 0.5% have 4 or more daughters
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that a gaseous embolus in a vessel of similar size deforms to a sausage-like shape

(shown schematically in figure 1). This shape is a common finding in the cerebral

arteries of patients following cardiac surgery, where autopsy reveals large numbers

of sausage-like arteriole dilatations [Moody et al., 1990]. The surface area of the

embolus touching the side of the vessel is computed by correcting for a domed end

with the same radius as the vessel. The length of the cylindrical part of the embolus is

L = (Vemb − 4πr3vessel/3)/πr2vessel, and the surface area touching the side is 2πrvesselL.

An embolus will come to rest when the pressure drop over a stationary embolus

is insufficient to overcome stiction, because the force on the embolus generated by the

pressure drop, πr2vessel∆p is less than the limiting force of stiction, 2KπrvesselL, i.e.

πr2vessel∆p < 2K(Vemb−4πr3vessel/3)/rvessel. The coefficient of stiction has been measured

to be K = 10 Nm−2 [Suzuki and Eckmann, 2003]. The pressure drop for the stationary

embolus is equal to the difference between the pressure at the bifurcation upstream

from the embolus and the capillary network (since there is no blood-flow in vessels

downstream of the embolus the pressure is equal to that of the capillaries).

Based on theoretical considerations, Branger et al. (see Eq. 19 in Branger and

Eckmann [1999]) previously developed a model parameterisation to describe the time

that a gaseous embolus of initial volume V0 in mm3 will take to dissolve,

T ′X = 2mXπ
1/3V

2/3
0 (2 +X)(4/3 +X)−2/3 (2)

where X = L/r is the aspect ratio of the embolus given by the length of the cylindrical

section of the bubble, L, divided by the radius, r, of the artery (see Fig. 1). The

parameter mX impacts directly on the lifetime of the bubble for a specific aspect ratio,

X, and has been calculated for two aspect ratios in Branger and Eckmann [1999] to

give m0 = 97.5 min/mm2 for a spherical bubble, and m2.6 = 130.9 min/mm2 where the

bubble is cylindrical (X = 2.6). We can rearrange this relation to calculate the volume

of the bubble at time temb since it was introduced to the model using:

V (temb) = (4/3 +X)

√
1

π

(
TX − temb
mX(4 + 2X)

)3

(3)

where TX and temb are in mins. Given the limited information regarding mX , we assumed

the relation for a spherical bubble (X = 0) in all subsequent calculations. This represents

a best case scenario with fastest dissolve times. These equations describing bubble

dissolution have been validated in-vivo for small emboli by Branger and Eckmann [1999],

and are thought to be scalable to much larger emboli since the underlying equations

represent gaseous diffusion over a surface and should be approximately valid for all

embolus sizes. When we consider gases other than air, the parameter mX is scaled

accordingly.

2.3. Fluid dynamics and recursive computation

The need to determine the pressures at bifurcations in the arterial tree is an added

complication of dealing with deformable gaseous emboli, and means that at least a basic
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(a) (b)
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Figure 2. Schematic of the recursive procedure for computing pressures, flows and

resistances. Pairs of parallel and serial resistances are rewritten as a single resistance

recursively through the whole tree until a single resistance remains. The flow through

the single resistor can be calculated, and then the procedure is carried out in reverse,

calculating pressures, flows and resistances at each level in the tree.

fluid dynamical analysis of flows in the tree is required. The treatment of pressure in

our model also has the important advantage of enabling us to investigate the theoretical

impact of blood pressure changes on embolus clearance.

When considering the stiction of gas bubbles, it is essential to determine the pressure

difference either side of the embolus. Since pressures need to be computed whenever an

embolus moves, and the bifurcating tree in the model has a very large number of nodes,

it is essential that a simplified fluid dynamics scheme is used to reduce computation

time. We treat the fluid flow through the tree as Poiseuille flow, where the pressure

drop across a segment is ∆p = Rf , where f is the flow through the segment and R acts

as a resistance, where R ∝ l/r4. Since we assume l ∝ r, R ∝ 1/r3, and substituting

ri = 2−i/3r0, the resistance at each level is given by Ri ∝ 2i. The pressure drop

and effective resistance can be treated using an electrical circuit analogue approach by

identifying ∆p as a potential difference, and f as a current (see e.g. Murray [1964]).

Thus, parallel resistances can be rewritten as a single resistor, and this can be repeated

recursively up the tree, working from the end arterioles to the parent node, to compute

all flows and pressures as an order N operation, where N is the number of vessels in the

tree. This process is summarised in figure 2, and leads to rapid computations which are

far faster than using matrix inversion or by directly solving simultaneous equations.

Panel (a) shows the initial bifurcating tree. In panel (b), the smallest vessels have

been summarised as a single equivalent resistance. In panel (c) the resistances in series

have been simplified, and in panel (d) the recursive step has been applied to the tree

that resulted in (c). Clearly, this procedure can be applied to any size of bifurcating

tree. Once a single resistance is obtained for the whole tree, the flow into the tree is
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calculated, and the recursion is followed backwards, computing pressures and flows at

every point (e.g. flows and pressures can be computed at step (b) as there is effectively

a potential divider in each branch at that stage. During the recursive procedure, these

flows and pressures are stored, and the stored pressures and flows can be used for all

calculations until any new blockages are introduced or existing blockages are freed as

emboli dissolve.

2.4. Buoyancy

The effects of buoyancy were emulated by introducing a probability weighting, wA =

(1 +Ag cos(θ))/2, related to the orientation of the branches with respect to gravity. Ag
is a parameter that varies between 0 and 1, where Ag = 0 represents no correction due

to buoyancy (where w = 1/2, as in the previous version of the model) and Ag = 1

represents an extreme correction. This type of weighting is consistent with the results

in Eshpuniyani et al. [2005], where θ is the angle between the plane of the bifurcation

and the horizontal. We note that this form for the weighting is ad-hoc, but running the

code with Ag = 1 will demonstrate the essence of the corrections that are required to

describe highly buoyant bubbles. Once the additional weighting factors are introduced,

the probability that an embolus travels in direction A at a bifurcation is,

PA = wAfA/(wAfA + wBfB) (4)

with PB = 1 − PA, where fA and fB designate flows in the A and B directions. θ is

assigned randomly to each bifurcation for each instance of the ensemble at time t = 0.

In future it may be possible to include realistic values for θ for the cerebral arterial tree

based on imaging data or models of angiogenesis.

2.5. Algorithm

The algorithm begins by calculating flows, pressures and resistances for an empty tree

(using the procedure in section 2.3). It then proceeds as follows:

(i) On any time step, an embolus may be created in the root node of the tree with

probability Pτ∆τ with size randomly chosen between 0 and rmax. Here Pτ is the

probability per unit time to create an embolus and ∆τ = 1s is the length of the

time step.

(ii) All emboli dissolve leading to a reduction in radius during each time step according

to the parameterisation in Sec. 2.2. Completely dissolved emboli are removed from

the simulation. If the reduction in radius generates a change in the blockage state

of the tree, flows and pressures are recalculated.

(iii) The emboli move according to the following rules:

(a) If the pressure behind the deformed embolus is insufficient to overcome stiction

it does not move. (See section 2.3)

(b) If all arterioles downstream are blocked, the embolus may not move since there

is no flow.
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(c) If the embolus radius becomes smaller than the current node and there is flow

downstream:

1. The flows in directions A and B are determined by solving our simplified

fluid dynamics scheme.

2. The embolus then moves in direction A with probability PA =

fAwA/(fAwA + fBwB). Otherwise, it moves in direction B.

(iv) If progress of an embolus generates a new blockage, then the pressures and flows

are recalculated. At this stage numerical measurements of the state of the tree are

repeated.

2.6. Bubble deformation

To confirm the importance of accounting for bubble deformation within the model the

percentage of blocked end arterioles was estimated for hypothetical non-deformable

bubbles that were assumed to remain spherical and become lodged when encountering

vessels of equal diameter. When bubbles were not assumed to deform the proportion of

blocked nodes rapidly increased to 100% and the instantaneous percentage of blocked

end arteries was significantly overestimated. Example simulations featuring deformable

and hypothetical non-deformable bubbles are shown in figure 3.

3. Results

Since the model is highly flexible and includes a large number of parameters, the next

few sections provide example simulations illustrating the effects of buoyancy, blood

pressure, and solubility with all other parameters held fixed. In the absence of clinical

data, showers of simulated emboli were generated using a random number generator,

which selected embolus radii from a flat distribution ranging from 0 to rmax (the

average embolus radius being rmax/2). For all simulations, embolisation was assumed

to commence at t = 10 s. Emboli were introduced to the tree at randomly generated

times centred on a mean embolisation rate of 1 embolus/second until the total number

of emboli to be simulated had been delivered. In each simulation the size range of

incoming emboli, solubility, buoyancy, blood pressure, and the total number of emboli

were varied. To simulate bubbles, all emboli were assumed to be deformable and highly

buoyant (Ag = 1). The average statistical behaviour of the system was determined from

an ensemble of 100 simulations. Outputs of the model include (i) the instantaneous

number of end arterioles receiving no flow, (ii) the number of end arterioles without

flow for a particular duration (10 mins, 1 hr, or 2 hrs.), and (iii) total time required

for washout. Benchmarks of 10 minutes, 1 hr and 2 hrs for obstruction of individual

arterioles were chosen to reflect clinically relevant time-scales over which it is thought

that neuronal changes might occur.
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Figure 3. Example simulations comparing the instantaneous percentage of end

arteries receiving no flow vs time for hypothetical non-deformable bubbles that remain

spherical as they enter the tree compared to more realistic bubbles that deform to the

diameter of the vessel. [P = 100mmHg, Ag = 0, embolisation rate = 1 emb/s]. (a)

When the bubbles are assumed to be spherical and non-deformable the total number of

blocked end arterioles rises rapidly and the vascular tree quickly bcomes fully blocked

(solid line). Deformation of the bubbles as they enter narrow vessels generates an order

of magnitude reduction in the proportion of arterioles without flow (dashed line). The

vertical dotted line indicates the time at which embolisation ceases. The total time

required for non-deformable bubbles to wash out of the system was longer than for

deformable bubbles [n = 1500, rmax = 0.3 mm]. Panel (b) shows the proportion of

end nodes receiving no blood supply for over 10 mins, plotted as a function of total

number of emboli (y-axis) and average embolus radius (x-axis), for deformable and

non-deformable emboli. If no blockage is registered, then the cell is black. For non-

deformable bubbles larger than approximately 0.1 mm average radius the tree was fully

blocked. These results confirm that it is essential to include embolus deformation in

the model to avoid overestimation of the proportion of blocked nodes.
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Figure 4. (a) Example simulations comparing the instantaneous percentage of end

arteries receiving no flow vs time for neutrally buoyant(Ag = 0) and highly buoyant

(Ag = 1) bubbles. [P = 100mm Hg, mean embolisation rate = 1 emb/s] (a)

After embolisation begins, embolic blockages accumulate and tend toward a dynamic

equilibrium level (where similar numbers of emboli are dissolving and leaving the

model vasculature as entering). Buoyancy reduces the proportion of end arterioles

without flow because certain paths through the tree become more probable when

emboli are buoyant. In the washout phase, emboli dissolve without being replaced

and the percentage of end arteries experiencing impaired blood flow gradually returns

to zero. However, the total time taken for embolus clearance is not reduced by the

effects of buoyancy, which indicates regional intensification. [n = 1500, rmax = 0.3 mm]

(b) shows 2D plots illustrating the effects of buoyancy on the number of individual end

arterioles that received no flow for over 10 mins as a function of total number of emboli

and average radius.

3.1. Buoyancy

Example simulations presented in figure 4 illustrate the effects of buoyancy on the

number of end arterioles receiving no flow and time required for embolic washout. In

panel (a) emboli are randomly generated with an average radius of rav = 0.15 mm

(randomly selected from a flat distribution from 0 to rmax=0.3 mm). The period of

embolisation features 1500 emboli introduced at an average rate of one embolus every
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Figure 5. Instantaneous blockages for input pressures of 50 and 100 mm Hg with all

other parameters held constant. [Ag = 1, n = 1500, rmax = 0.3 mm, embolisation rate

= 1 emb/s]

second over a period of approximately 25 mins. For reference, an average 0.15 mm

radius bubble in this simulation is estimated to take 27.6 minutes to dissolve while the

largest 0.30 mm radius bubble takes 110 minutes. As in our previously published model,

after embolisation begins the proportion of end arterioles without flow tends toward a

dynamic equilibrium level [Chung et al., 2007]. However, here we are also interested in

embolus clearance, so we allow embolisation to cease and emboli to wash out. Following

embolisation, existing emboli dissolve and blockages are cleared.

The effects of buoyancy can be seen to slightly reduce the proportion of blocked

end arterioles due to some paths through the tree becoming more probable than others.

This decreases the total number of obstructed end arterioles but was not found to reduce

the time for embolic washout. This effect is expected to be especially pronounced for

highly buoyant emboli (Ag = 1) since buoyancy leads to preferred paths through the

vasculature and a higher probability of emboli obstructing the same nodes.

3.2. Blood pressure

To demonstrate the impact of blood pressure changes on the total number of end

arterioles without flow, simulations were performed for input pressures of 50 and 100

mmHg. The total instantaneous percentage of end arteries receiving no flow decreases

with increasing pressure, see figure 5.

Figure 6 shows the effects of doubling the input pressure on the percentage of end

arterioles that were obstructed for longer than 10 minutes, 1 hour and 2 hours. In all

simulations, bubbles were assumed to be deformable and highly buoyant. These results

suggest that the duration of embolic blockages due to gas emboli can be expected to

fluctuate with changes in blood pressure. We find that increased blood pressure leads
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Figure 6. The proportion of end arterioles receiving no supply for 10 minutes, 1

hour, and 2 hours for buoyant emboli of varying number (y-axis) and size (x-axis).

The pressure at the root node is 50 mmHg in the l.h.s. panels and 100 mmHg on the

r.h.s. Emboli were introduced at a rate of 1 emb/s and Ag = 1.

to a reduction in both the total number and duration of embolic blockages.

3.3. Solubility

Finally, we investigated the effects of altering the dissolve rate of emboli, figure 7.

Although the simulations performed as part of this study are purely hypothetical, in

practice a faster dissolve rate could be achieved by replacing air with a more soluble

gas such as CO2. Increasing the dissolve rate of emboli by a factor of 20 was found

to significantly reduce the duration of blockages. Figure 7(a) shows the instantaneous

percentage of arterioles receiving no flow for 1500 emboli incident on the tree at an

average rate of 1 embolus per second, with an average radius of 0.15 mm (0.3 mm

maximum radius). The increase in dissolve rate significantly decreased the total number

of blocked end arteries and was observed to have a striking impact on the total time

taken for emboli to wash out of the system. Panel (b) shows the reduction in arterioles

receiving no flow for over 10 minutes.
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Figure 7. (a) Example simulations showing the accumulation of embolic blockages

and washout phase for air compared to a gas that is 20 times more soluble. Increased

solubility reduces the instantaneous percentage of arterioles receiving no flow and

blockages clear almost instantaneously once embolisation ceases. [P = 100 mmHg,

Ag = 1, n = 1500, rmax = 0.3 mm, embolisation rate = 1 emb/s] (b) Percentage of

model terminal arterioles without flow for at least 10 minutes for air compared to a

gas that is 20 times more soluble. The increase in dissolve rate leads to a dramatic

reduction in blockage. Even for simulations featuring bubbles with radii approaching

that of the root node ( 0.5 mm max radius) virtually no end arterioles remained

obstructed for longer than 10 minutes. [P = 100 mmHg, Ag = 1, embolisation rate =

1 emb/s]

4. Discussion

Despite air embolism representing an important clinical problem, surprisingly little

theoretical modelling has previously been undertaken to try to quantify the impact

of bubbles on cerebral blood flow. The current study contributes to our understanding

of the accumulation of emboli, interplay between blood pressure and bubble properties,

and the process of embolic washout. To the best of our knowledge, our model is the

first to incorporate realistic bubble deformation, solubility, buoyancy, and stiction.

Figure 3 illustrates the importance of modelling bubble deformation. In the absence
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of deformation the total instantaneous percentage of arterioles without flow rises rapidly

and is significantly overestimated. Assuming hypothetical non-deformable spherical

bubbles the arterial tree quickly reaches saturation.

In the results section we presented results for deformable emboli and investigated

the effects of buoyancy, blood pressure and solubility. The effects of buoyancy of the

bubbles can be seen in figure 4 to slightly reduce the total number of end arteries

receiving no flow without decreasing the total time required for emboli to completely

wash out of the tree.

An interesting finding of our model was the relationship between embolisation

dynamics, washout of bubbles, and blood pressure. An increase in blood pressure was

found to decrease the proportion of blocked arterioles (figures 5 and 6) and appeared

to slightly reduced the time required for bubbles to clear. Our results suggest that

an increase in blood pressure may assist in forcing bubbles through the vascular tree

more rapidly, thereby reducing the total number of affected arterioles. This is based

on the principle that higher pressures push gaseous emboli further into the tree, which

reduces the total area of the vasculature that will be affected, (since the number of

nodes downstream from a blockage halves at each bifurcation). A similar effect would

also be expected to be associated with a decrease in stiction through the introduction

of surfactants. This method for reducing the impact of air emboli has previously been

tested in animals but not in humans [Barak and Katz, 2005]. We note that a change

in blood pressure will slightly modify the solubility here [Branger and Eckmann, 1999]

(for example change in blood pressure from 100mmHg to 50mmHg will decrease the

total pressure in the blood - the sum of atmospheric pressure and blood pressure - by

approximately 5%, leading to similar proportional changes in the dissolve rate).

Gas solubility had an impact on both the instantaneous number of arterioles

without flow and bubble clearance time; more rapid dissolve times led to faster embolus

clearance, figure 7. The dramatic reduction in the total number of end arterioles

receiving no flow suggests that if bubbles were formed from a much more soluble gas

(such as CO2) both the percentage of arterioles without flow and clearance time would

dramatically reduce. At the faster dissolve rate no arterioles experienced blockages

lasting longer than 20 mins and the washout period was negligible. This finding is

consistent with in vivo research conducted on animals showing that the fatal dose of

injected arterial gas is around 50 times higher for infusion with CO2 than for air [Moore

and Braselton, 1940]. Our results are also consistent with ultrasound embolus detection

studies during cardiac surgery which show that flooding of the operative area with CO2

reduces the number of emboli detected in the cerebral bloodstream by 75% [Svenarud

et al., 2004]. It is hoped that combining our simulations with clinical detection and

sizing of bubbles,[Banahan et al., 2012], will enable us to help answer some of these

ongoing research questions in future work.

As the model remains highly simplified it retains a number of limitations. Firstly,

our tree is completely symmetric and bifurcation angles were randomly assigned at

the start of each simulation. We are currently in the process of growing anatomically
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realistic cerebral vasculatures in-silico and hope to have an opportunity to combine these

with patient specific clinical imaging data, computational forecasting, and multi-scale

modelling of diffusion and biochemical interactions in future work. In our model, gaseous

emboli do not split at bifurcations or coalesce. Bubble splitting is likely to affect embolus

trajectory at bifurcations angled within, or close to, the horizontal plane. In our model

of bubble dissolution, we do not include a treatment of the change in dissolution time due

to bubble deformation. Also, we assume that the forces required to lodge and dislodge

the bubble are equal. So far, we have only considered steady flow conditions (e.g.

during cardiopulmonary bypass), however, we expect to be able to include windkessel

equations to also describe pulsatile flow in future models. In view of these limitations,

the results of the current study are not intended to inform clinical practice, but rather,

may highlight areas of interest for further study.

Although the total instantaneous percentage of end arteries without flow is of

limited clinical value, we also investigated the proportion of arterioles that theoretically

received zero flow for longer than a pre-defined cut-off time (e.g. 10 mins, 1 hr, 2

hrs). Further work is required to relate the duration of impaired perfusion to models

of cell death describing the timescale of neuronal changes, reversible ischaemia, and

irreversible tissue damage [Lipton, 1999]. This is likely to require the development

of multi-scale models of cell death, which combine cellular biochemical interactions,

solution of localised diffusion equations, and realistic embedding of the vasculature

within brain tissue. Further work will also be required to incorporate the impact of

haemodilution (which is highly relevant in a cardiac surgery setting), collateral flow,

and cerebral autoregulation.

By combining a realistic description of the deformation and dissolution of bubbles

with a symmetric model of the cerebral arterial tree and a simplified description of

fluid dynamics, we believe that we have succeeded in qualitatively understanding the

likely extent and duration of cerebral embolic blockages due to gas bubbles. Given

recent advances in bubble sizing [Banahan et al., 2012], and knowledge of patient-

specific anatomy and physiology, we anticipate that it will soon be possible to make

intra-operative predictions of the impact of embolisation during surgery.

5. Summary

This paper describes a Monte-Carlo simulation used to model the motion of gaseous

emboli through the cerebral vasculature. Our model improves on previous research by

modelling deformable gas bubbles and includes realistic stiction effects, fluid dynamical

considerations (including blood pressure), and a basic description of embolus buoyancy.

We show that our model can be used to investigate the dynamic nature of cerebral

embolisation and to estimate the duration of impaired blood flow in individual arterioles

over time. Using this model it becomes possible to examine the effects of input pressure,

embolus composition, buoyancy, stiction, size, and embolisation rate on cerebral blood

flow. We found that deformation of gas bubbles is crucial for quantifying embolic
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obstruction in response to blood pressure. We also give examples of the potential of

our model for investigating factors that influence the impact of gaseous emboli during

surgery. Buoyancy effects tend to influence embolus trajectory and generate regional

intensification of blockages. Since the accumulation of embolic blockages is partly

dependent on blood pressure, maintenance of higher blood pressures might improve

embolic washout by rapidly forcing bubbles through the vasculature, and may be worth

further study. We also confirm that replacement of air with a more soluble gas could

theoretically eliminate the risk of gas embolism.
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