58 research outputs found

    Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer

    Get PDF
    he planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and -2=3 law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET),This work was supported by the Andalusia Regional Government through project P12-RNM-2409 and by the Spanish Agencia Estatal de Investigación (AEI) through projects CGL2016-81092-R and CGL2017-90884-REDT. We acknowledge the financial support by the European Union’s Horizon 2020 research and innovation program through project ACTRIS-2 (grant agreement no. 654109)

    Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain

    Get PDF
    A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity

    Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula

    Get PDF
    The synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in-situ measurements is devoted to the characterization of dust intrusions. A case study of air masses advected from the Saharan region to the Canary Islands and the Iberian Peninsula, located relatively close and far away from the dust sources, respectively, was considered for this purpose. The observations were performed over three Spanish geographically strategic stations within the dust-influenced area along a common dust plume pathway monitored from 11 to 19 of March 2008. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected.This work has been supported by the Spanish Ministry for Science and Innovation (MICINN) under the Complementary Actions CGL2008-01330-E (2009) in the frame of the Spanish and Portuguese Aerosol LIdar NETwork (SPALINET), and CGL2010-10012-E (Evaluation of lidar observations in the frame of CIEMAT/EARLINET intercomparison by airborne in-situ measurements of trace gases and aerosols, MISPA-LIDAR, 2010); projects CGL2008-05939-C03-03/CLI, CGL2007-66477-C02-01, CSD2007-00067 and CGL2010-18782 of the Spanish Ministry of Education; projects P08-RNM-3568 and P10-RNM-6299 of the Autonomous Government of Andalusia; and the EARLINET-ASOS project (EU Coordination Action, contract no. 025991 (RICA)). JLG-R thanks the Spanish Ministry of Education and the Portuguese Fundaçao para a Ciencia e a Tecnologia for supporting under grants EX2009-0700 and SFRH/BPD/63090/2009, respectively

    Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula

    Get PDF
    The synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in-situ measurements is devoted to the characterization of dust intrusions. A case study of air masses advected from the Saharan region to the Canary Islands and the Iberian Peninsula, located relatively close and far away from the dust sources, respectively, was considered for this purpose. The observations were performed over three Spanish geographically strategic stations within the dust-influenced area along a common dust plume pathway monitored from 11 to 19 of March 2008. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected. Meteorological conditions favoured the dust plume transport over the area under study. Backtrajectory analysis clearly revealed the Saharan region as the source of the dust intrusion. Under the Saharan air masses influence, AERONET Aerosol Optical Depth at 500 nm (AOD<sup>500</sup>) ranged from 0.3 to 0.6 and Ångström Exponent at 440/675 nm wavelength pair (AE<sup>440/675</sup>) was lower than 0.5, indicating a high loading and predominance of coarse particles during those dusty events. Lidar observations characterized their vertical layering structure, identifying different aerosol contributions depending on altitude. In particular, the 3-km height dust layer transported from the Saharan region and observed over SCO site was later on detected at ARN and GRA stations. No significant differences were found in the lidar (extinction-to-backscatter) ratio (LR) estimation for that dust plume over all stations when a suitable aerosol scenario for lidar data retrieval is selected. Lidar-retrieved LR values of 60–70 sr were obtained during the main dust episodes. These similar LR values found in all the stations suggest that dust properties were kept nearly unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by means of ground-level in-situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition processes observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred over each station. Discrepancies between columnar-integrated and ground-level in-situ measurements show a clear dependence on height of the dust particle size distribution. Then, further vertical size-resolved observations are needed for evaluation of the impact on surface of the Saharan dust arrival to the Iberian Peninsula

    An automatic observation-based aerosol typing method for EARLINET

    Get PDF
    We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with lit-erature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80 %. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite

    Aerosol lidar intercomparison in the framework of SPALINET- the SPAnish LIdar NETwork: methodology and results

    Get PDF
    A group of eight Spanish lidars was formed in order to extend the European Aerosol Research Lidar Network-Advanced Sustainable Observation System (EARLINET-ASOS) project. This study presents intercomparisons at the hardware and software levels. Results of the system intercomparisons are based on range-square-corrected signals in cases where the lidars viewed the same atmospheres. Comparisons were also made for aerosol backscatter coefficients at 1064 nm (2 systems) and 532 nm (all systems), and for extinction coefficients at 532 nm (2 systems). In total, three field campaigns were carried out between 2006 and 2007. Comparisons were limited to the highest layer found before the free troposphere, i.e., either the atmospheric boundary layer or the aerosol layer just above it. Some groups did not pass the quality assurance criterion on the first attempt. Following modification and improvement to these systems, all systems met the quality criterion. The backscatter algorithm intercomparison consisted of processing lidar signal profiles simulated for two types of atmospheric conditions. Three stages with increasing knowledge of the input parameters were considered. The results showed that all algorithms work well when all inputs are known. They also showed the necessity to perform, when possible, additional measurements to attain better estimation of the lidar ratio, which is the most critical unknown in the elastic lidar inversion

    Contribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean

    Get PDF
    In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multiintrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms ofdust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.Published4698-47114A. Clima e OceaniJCR Journalrestricte

    LALINET: The First Latin American–Born Regional Atmospheric Observational Network

    Get PDF
    Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the 21st century have built LALINET (Latin American Lidar NETwork), the only observational network in Latin America created by the agreement and commitment of Latin American scientists. They worked with limited funding but an abundance of enthusiasm and commitment toward their joint goal. Before LALINET, there were a few pioneering lidar stations operating in Latin America, described briefly here. Bi-annual Latin American Lidar Workshops, held from 2001 to the present, supported both the development of the regional lidar community and LALINET. At those meetings, lidar researchers from Latin America meet to conduct regular scientific and technical exchanges among themselves and with experts from the rest of the world. Regional and international scientific cooperation has played an important role for the development of both the individual teams and the network. The current LALINET status and activities are described, emphasizing the processes of standardization of the measurements, methodologies, calibration protocols, and retrieval algorithms. Failures and successes achieved in the buildup of LALINET are presented. In addition, the first LALINET joint measurement campaign and a set of aerosol extinction profile measurements obtained from the aerosol plume produced by the Calbuco volcano eruption on April 22, 2015, are described and discussed.Fil: Antuña Marrero, Juan Carlos. Centro Meteorológico de Camagüey; CubaFil: Landulfo, Eduardo. Instituto de Pesquisas Energéticas e Nucleares; BrasilFil: Estevan, René. Centro Meteorológico de Camagüey; CubaFil: Barja, Boris. Centro Meteorológico de Camagüey; Cuba. Universidade de Sao Paulo; BrasilFil: Robock, Alan. State University of New Jersey; Estados UnidosFil: Wolfram, Elian Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Ristori, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Clemesha, Barclay. Upper Atmosphere Research Group; BrasilFil: Zaratti, Francesco. Universidad Mayor de San Andrés; BoliviaFil: Forno, Ricardo. Universidad Mayor de San Andrés; BoliviaFil: Armandillo, Errico. ESTEC; Países BajosFil: Bastidas, Álvaro E.. Universidad Nacional de Colombia. Sede Medellin; ColombiaFil: de Frutos Baraja, Ángel Máximo. Universidad de Valladolid; EspañaFil: Whiteman, David N.. National Aeronautics and Space Administration; Estados UnidosFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Barbosa, Henrique M. J.. Universidade de Sao Paulo; BrasilFil: Lopes, Fabio. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; BrasilFil: Montilla-Rosero, Elena. Universidad de Concepción; Chile. Universidad Escuela de Administración, Finanzas e Instituto Tecnológico; ColombiaFil: Guerrero Rascado, Juan L.. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; Brasil. Universidad de Granada; Españ

    Extreme, wintertime Saharan dust intrusion in the Iberian Peninsula: Lidar monitoring and evaluation of dust forecast models during the February 2017 event

    Get PDF
    The research leading to these results has received funding from the H2020 program from the European Union (grant agreement no. 654109, 778349) and also from the Spanish Ministry of Industry, Economy and Competitiviness (MINECO, ref. CGL2013-45410-R, CGL2016-81092-R, CGL2017-85344-R, TEC2015-63832-P), the Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT); the CommSensLab "Maria de Maeztu" Unity of Excellence (ref. MDM-2016-0600) financed by the Spanish Agencia Estatal de Investigación. Co-funding was also provided by the European Union through the European Regional Development Fund (ref. POCI-01-0145-FEDER-007690, ALT20-03-0145-FEDER-000004, ALT20-03-0145-FEDER-000011); by the Andalusia Regional Government (ref. P12-RNM-2409); by the Madrid Regional Government (projects TIGAS-CM, ref. Y2018/EMT-5177 and AIRTEC-CM, ref. P2018/EMT4329); by the University of Granada through “Plan Propio. Programa 9 Convocatoria 2013” and by the Portuguese Foundation for Science and Technology and national funding (ref. SFRH/BSAB/143164/2019). The BSC-DREAM8b and NNMB/BSC-Dust (now NMMB-MONARCH) model simulations were performed by the Mare Nostrum supercomputer hosted by the Barcelona Supercomputer Center (BSC). S. Basart acknowledges the AXA Research Fund for supporting aerosol research at the BSC through the AXA Chair on Sand and Dust Storms Fund, as well as the InDust project (COST Action CA16202). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.An unprecedented extreme Saharan dust event was registered in winter time from 20 to 23 February 2017 over the Iberian Peninsula (IP). We report on aerosol optical properties observed under this extreme dust intrusion through passive and active remote sensing techniques. For that, AERONET (AErosol RObotic NETwork) and EARLINET (European Aerosol Research LIdar NETwork) databases are used. The sites considered are: Barcelona (41.38°N, 2.17°E), Burjassot (39.51°N, 0.42°W), Cabo da Roca (38.78°N, 9.50°W), Évora (38.57°N, 7.91°W), Granada (37.16°N, 3.61°W) and Madrid (40.45°N, 3.72°W). Large aerosol optical depths (AOD) and low Ångström exponents (AE) are observed. An AOD of 2.0 at 675 nm is reached in several stations. A maximum peak of 2.5 is registered in Évora. During and around the peak of AOD, AEs close to 0 and even slightly negative are measured. With regard to vertically-resolved aerosol optical properties, particle backscatter coefficients as high as 15 Mm−1 sr−1 at 355 nm are recorded at the lidar stations. Layer-mean lidar ratios are found in the range 40–55 sr at 355 nm and 34–61 sr at 532 nm during the event. The particle depolarization ratios are found to be constant inside the dust layer, and consistent from one site to another. Layer-mean values vary in the range 0.19–0.31. Another remarkable aspect of the event is the limited vertical distribution of the dust plume which never exceeds 5 km. The extreme aspect of the event also presented a nice case for testing the ability of two dust forecast models, BSC-DREAM8b and NMMB/BSC-Dust, to reproduce the arrival, the vertical distribution and the intensity of the dust plume over a long-range transport region. In the particular case of the February 2017 dust event, we found a large underestimation in the forecast of the extinction coefficient provided by BSC-DREAM8b at all heights independently of the site. In contrast NMMB/BSC-Dust forecasts presented a better agreement with the observations, especially in southwestern part of the IP. With regard to the forecast skill as a function of lead time, no clear degradation of the prognostic is appreciated at 24, 48 and 72 h for Évora and Granada stations (South). However the prognostic does degrade (bias increases and/or correlation decreases) for Barcelona (North), which is attributed to the fact that Barcelona is at a greater distance from the source region and to the singularity of the event.Funding from the H2020 program from the European Union (grant agreement no. 654109, 778349)Spanish Ministry of Industry, Economy and Competitiviness (MINECO, ref. CGL2013-45410-R, CGL2016-81092-R, CGL2017-85344-R, TEC2015-63832-P)Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT)CommSensLab "Maria de Maeztu" Unity of Excellence (ref. MDM-2016-0600) financed by the Spanish Agencia Estatal de InvestigaciónCo-funding was also provided by the European Union through the European Regional Development Fund (ref. POCI-01-0145-FEDER-007690, ALT20-03-0145-FEDER-000004, ALT20-03-0145-FEDER-000011)Andalusia Regional Government (ref. P12-RNM-2409); by the Madrid Regional Government (projects TIGAS-CM, ref. Y2018/EMT-5177 and AIRTEC-CM, ref. P2018/EMT4329)Portuguese Foundation for Science and Technology and national funding (ref. SFRH/BSAB/143164/2019

    A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals

    Get PDF
    Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research Infra-Structure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAM-ABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1-6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 mu g m(-3) at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies
    corecore