2,053 research outputs found
On codimension two flats in Fermat-type arrangements
In the present note we study certain arrangements of codimension flats in
projective spaces, we call them "Fermat arrangements". We describe algebraic
properties of their defining ideals. In particular, we show that they provide
counterexamples to an expected containment relation between ordinary and
symbolic powers of homogeneous ideals.Comment: 9 page
Aharonov-Casher oscillations of spin current through a multichannel mesoscopic ring
The Aharonov-Casher (AC) oscillations of spin current through a 2D ballistic
ring in the presence of Rashba spin-orbit interaction and external magnetic
field has been calculated using the semiclassical path integral method. For
classically chaotic trajectories the Fokker-Planck equation determining
dynamics of the particle spin polarization has been derived. On the basis of
this equation an analytic expression for the spin conductance has been obtained
taking into account a finite width of the ring arms carrying large number of
conducting channels. It was shown that the finite width results in a broadening
and damping of spin current AC oscillations. We found that an external magnetic
field leads to appearance of new nondiagonal components of the spin
conductance, allowing thus by applying a rather weak magnetic field to change a
direction of the transmitted spin current polarization.Comment: 16 pages, 6 figure
Quantum Mechanical Properties of Bessel Beams
Bessel beams are studied within the general framework of quantum optics. The
two modes of the electromagnetic field are quantized and the basic dynamical
operators are identified. The algebra of these operators is analyzed in detail;
it is shown that the operators that are usually associated to linear momentum,
orbital angular momentum and spin do not satisfy the algebra of the translation
and rotation group. In particular, what seems to be the spin is more similar to
the helicity. Some physical consequences of these results are examined.Comment: 17 pages, no figures. New versio
Absorption mechanisms in photon induced two-body knockout
Calculations have been performed for the O(,pn) and the
O(,pp) reaction in the photon-energy range = 60-300
MeV. Besides the contribution from the more common photoabsorption on the
pionic degrees of freedom, we have investigated the influence of heavier meson
exchange () and intermediate creation with
and exchange. Whereas the meson is found to set the main trends,
the meson is found not to be discardable in a theoretical description of
the (,pn) reaction. The incorporation of an energy dependence and a
decay width in the propagator is observed to be essential in order to
arrive at a more realistic description of (,NN) reactions at higher
photon energies.Comment: 10 pages, 5 figures in seperate postscript file, Submitted to Phys.
Lett. B. - INW9306I
Flavor Asymmetry of the Nucleon Sea: Consequences for Dilepton Production
Parton distributions derived from a chiral quark model that generates an
excess of down quarks and antiquarks in the proton's sea satisfactorily
describe the measured yields of muon pairs produced in proton-nucleus
collisions. Comparison of dilepton yields from hydrogen and deuterium targets
promises greater sensitivity to the predicted flavor asymmetry.Comment: 11 pages, REVTEX, (Three PostScript figures available by anonymous
ftp from fnth06.fnal.gov in directory /pub/Fermilab-Pub/92.264.)
FERMILAB-PUB-92/264--T LBL-3298
Dissipative dynamics of topological defects in frustrated Heisenberg spin systems
We study the dynamics of topological defects of a frustrated spin system
displaying spiral order. As a starting point we consider the SO(3) nonlinear
sigma model to describe long-wavelength fluctuations around the noncollinear
spiral state. Besides the usual spin-wave magnetic excitations, the model
allows for topologically non-trivial static solutions of the equations of
motion, associated with the change of chirality (clockwise or counterclockwise)
of the spiral. We consider two types of these topological defects, single
vortices and vortex-antivortex pairs, and quantize the corresponding solutions
by generalizing the semiclassical approach to a non-Abelian field theory. The
use of the collective coordinates allows us to represent the defect as a
particle coupled to a bath of harmonic oscillators, which can be integrated out
employing the Feynman-Vernon path-integral formalism. The resulting effective
action for the defect indicates that its motion is damped due to the scattering
by the magnons. We derive a general expression for the damping coefficient of
the defect, and evaluate its temperature dependence in both cases, for a single
vortex and for a vortex-antivortex pair. Finally, we consider an application of
the model for cuprates, where a spiral state has been argued to be realized in
the spin-glass regime. By assuming that the defect motion contributes to the
dissipative dynamics of the charges, we can compare our results with the
measured inverse mobility in a wide range of temperature. The relatively good
agreement between our calculations and the experiments confirms the possible
relevance of an incommensurate spiral order for lightly doped cuprates.Comment: 22 pages, 7 figures, final published versio
Graduate Quantum Mechanics Reform
We address four main areas in which graduate quantum mechanics education can
be improved: course content, textbook, teaching methods, and assessment tools.
We report on a three year longitudinal study at the Colorado School of Mines
using innovations in all these areas. In particular, we have modified the
content of the course to reflect progress in the field in the last 50 years,
used textbooks that include such content, incorporated a variety of teaching
techniques based on physics education research, and used a variety of
assessment tools to study the effectiveness of these reforms. We present a new
assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further
testing of a previously developed assessment tool, the Quantum Mechanics
Conceptual Survey. We find that graduate students respond well to
research-based techniques that have been tested mainly in introductory courses,
and that they learn much of the new content introduced in each version of the
course. We also find that students' ability to answer conceptual questions
about graduate quantum mechanics is highly correlated with their ability to
solve calculational problems on the same topics. In contrast, we find that
students' understanding of basic undergraduate quantum mechanics concepts at
the modern physics level is not improved by instruction at the graduate level.Comment: accepted to American Journal of Physic
Bound and resonance states of the nonlinear Schroedinger equation in simple model systems
The stationary nonlinear Schroedinger equation, or Gross-Pitaevskii equation,
is studied for the cases of a single delta potential and a delta-shell
potential. These model systems allow analytical solutions, and thus provide
useful insight into the features of stationary bound, scattering and resonance
states of the nonlinear Schroedinger equation. For the single delta potential,
the influence of the potential strength and the nonlinearity is studied as well
as the transition from bound to scattering states. Furthermore, the properties
of resonance states for a repulsive delta-shell potential are discussed.Comment: 19 pages, 10 figure
Heavy Quarkonia in Quark-Gluon Plasma
Using the color-singlet free energy F_1 and total internal energy U_1
obtained by Kaczmarek et al. for a static quark Q and an antiquark Qbar in
quenched QCD, we study the binding energies and wave functions of heavy
quarkonia in a quark-gluon plasma. By minimizing the grand potential in a
simplified schematic model, we find that the proper color-singlet Q-Qbar
potential can be obtained from the total internal energy U_1 by subtracting the
gluon internal energy contributions. We carry out this subtraction in the local
energy-density approximation in which the gluon energy density can be related
to the local gluon pressure by the quark-gluon plasma equation of state. We
find in this approximation that the proper color-singlet Q-Qbar potential is
approximately F_1 for T ~ T_c and it changes to (3/4)F_1+(1/4)U_1 at high
temperatures. In this potential model, the J/psi is weakly bound above the
phase transition temperature T_c, and it dissociates spontaneously above 1.62
T_c, while chi_c and psi' are unbound in the quark-gluon plasma. The bottomium
states Upsilon, chi_b and Upsilon' are bound in the quark-gluon plasma and they
dissociate at 4.10 T_c, 1.18 T_c, and 1.38 T_c respectively. For comparison, we
evaluate the heavy quarkonium binding energies also in other models using the
free energy F_1 or the total internal energy U_1 as the Q-Qbar potential. The
comparison shows that the model with the new Q-Qbar potential proposed in this
manuscript gives dissociation temperatures that agree best with those from
spectral function analyses. We evaluate the cross section for
sigma(g+J/psi->c+cbar) and its inverse process, in order to determine the J/psi
dissociation width and the rate of J/psi production by recombining c and cbar
in the quark gluon plasma.Comment: 30 pages, in Late
Statistical and data reporting guidelines for the European Journal of Cardio-Thoracic Surgery and the Interactive CardioVascular and Thoracic Surgery
As part of the peer review process for the European Journal of Cardio-Thoracic Surgery (EJCTS) and the Interactive CardioVascular and Thoracic Surgery (ICVTS), a statistician reviews any manuscript that includes a statistical analysis. To facilitate authors considering submitting a manuscript and to make it clearer about the expectations of the statistical reviewers, we present up-to-date guidelines for authors on statistical and data reporting specifically in these journals. The number of statistical methods used in the cardiothoracic literature is vast, as are the ways in which data are presented. Therefore, we narrow the scope of these guidelines to cover the most common applications submitted to the EJCTS and ICVTS, focusing in particular on those that the statistical reviewers most frequently comment o
- …