2,053 research outputs found

    On codimension two flats in Fermat-type arrangements

    Full text link
    In the present note we study certain arrangements of codimension 22 flats in projective spaces, we call them "Fermat arrangements". We describe algebraic properties of their defining ideals. In particular, we show that they provide counterexamples to an expected containment relation between ordinary and symbolic powers of homogeneous ideals.Comment: 9 page

    Aharonov-Casher oscillations of spin current through a multichannel mesoscopic ring

    Full text link
    The Aharonov-Casher (AC) oscillations of spin current through a 2D ballistic ring in the presence of Rashba spin-orbit interaction and external magnetic field has been calculated using the semiclassical path integral method. For classically chaotic trajectories the Fokker-Planck equation determining dynamics of the particle spin polarization has been derived. On the basis of this equation an analytic expression for the spin conductance has been obtained taking into account a finite width of the ring arms carrying large number of conducting channels. It was shown that the finite width results in a broadening and damping of spin current AC oscillations. We found that an external magnetic field leads to appearance of new nondiagonal components of the spin conductance, allowing thus by applying a rather weak magnetic field to change a direction of the transmitted spin current polarization.Comment: 16 pages, 6 figure

    Quantum Mechanical Properties of Bessel Beams

    Full text link
    Bessel beams are studied within the general framework of quantum optics. The two modes of the electromagnetic field are quantized and the basic dynamical operators are identified. The algebra of these operators is analyzed in detail; it is shown that the operators that are usually associated to linear momentum, orbital angular momentum and spin do not satisfy the algebra of the translation and rotation group. In particular, what seems to be the spin is more similar to the helicity. Some physical consequences of these results are examined.Comment: 17 pages, no figures. New versio

    Absorption mechanisms in photon induced two-body knockout

    Full text link
    Calculations have been performed for the 16^{16}O(γ\gamma,pn) and the 16^{16}O(γ\gamma,pp) reaction in the photon-energy range EγE_{\gamma} = 60-300 MeV. Besides the contribution from the more common photoabsorption on the pionic degrees of freedom, we have investigated the influence of heavier meson exchange (ρ,σ,ω\rho, \sigma, \omega) and intermediate Δ\Delta creation with π\pi and ρ\rho exchange. Whereas the π\pi meson is found to set the main trends, the ρ\rho meson is found not to be discardable in a theoretical description of the (γ\gamma,pn) reaction. The incorporation of an energy dependence and a decay width in the Δ\Delta propagator is observed to be essential in order to arrive at a more realistic description of (γ\gamma,NN) reactions at higher photon energies.Comment: 10 pages, 5 figures in seperate postscript file, Submitted to Phys. Lett. B. - INW9306I

    Flavor Asymmetry of the Nucleon Sea: Consequences for Dilepton Production

    Full text link
    Parton distributions derived from a chiral quark model that generates an excess of down quarks and antiquarks in the proton's sea satisfactorily describe the measured yields of muon pairs produced in proton-nucleus collisions. Comparison of dilepton yields from hydrogen and deuterium targets promises greater sensitivity to the predicted flavor asymmetry.Comment: 11 pages, REVTEX, (Three PostScript figures available by anonymous ftp from fnth06.fnal.gov in directory /pub/Fermilab-Pub/92.264.) FERMILAB-PUB-92/264--T LBL-3298

    Dissipative dynamics of topological defects in frustrated Heisenberg spin systems

    Get PDF
    We study the dynamics of topological defects of a frustrated spin system displaying spiral order. As a starting point we consider the SO(3) nonlinear sigma model to describe long-wavelength fluctuations around the noncollinear spiral state. Besides the usual spin-wave magnetic excitations, the model allows for topologically non-trivial static solutions of the equations of motion, associated with the change of chirality (clockwise or counterclockwise) of the spiral. We consider two types of these topological defects, single vortices and vortex-antivortex pairs, and quantize the corresponding solutions by generalizing the semiclassical approach to a non-Abelian field theory. The use of the collective coordinates allows us to represent the defect as a particle coupled to a bath of harmonic oscillators, which can be integrated out employing the Feynman-Vernon path-integral formalism. The resulting effective action for the defect indicates that its motion is damped due to the scattering by the magnons. We derive a general expression for the damping coefficient of the defect, and evaluate its temperature dependence in both cases, for a single vortex and for a vortex-antivortex pair. Finally, we consider an application of the model for cuprates, where a spiral state has been argued to be realized in the spin-glass regime. By assuming that the defect motion contributes to the dissipative dynamics of the charges, we can compare our results with the measured inverse mobility in a wide range of temperature. The relatively good agreement between our calculations and the experiments confirms the possible relevance of an incommensurate spiral order for lightly doped cuprates.Comment: 22 pages, 7 figures, final published versio

    Graduate Quantum Mechanics Reform

    Full text link
    We address four main areas in which graduate quantum mechanics education can be improved: course content, textbook, teaching methods, and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, used textbooks that include such content, incorporated a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey. We find that graduate students respond well to research-based techniques that have been tested mainly in introductory courses, and that they learn much of the new content introduced in each version of the course. We also find that students' ability to answer conceptual questions about graduate quantum mechanics is highly correlated with their ability to solve calculational problems on the same topics. In contrast, we find that students' understanding of basic undergraduate quantum mechanics concepts at the modern physics level is not improved by instruction at the graduate level.Comment: accepted to American Journal of Physic

    Bound and resonance states of the nonlinear Schroedinger equation in simple model systems

    Full text link
    The stationary nonlinear Schroedinger equation, or Gross-Pitaevskii equation, is studied for the cases of a single delta potential and a delta-shell potential. These model systems allow analytical solutions, and thus provide useful insight into the features of stationary bound, scattering and resonance states of the nonlinear Schroedinger equation. For the single delta potential, the influence of the potential strength and the nonlinearity is studied as well as the transition from bound to scattering states. Furthermore, the properties of resonance states for a repulsive delta-shell potential are discussed.Comment: 19 pages, 10 figure

    Heavy Quarkonia in Quark-Gluon Plasma

    Full text link
    Using the color-singlet free energy F_1 and total internal energy U_1 obtained by Kaczmarek et al. for a static quark Q and an antiquark Qbar in quenched QCD, we study the binding energies and wave functions of heavy quarkonia in a quark-gluon plasma. By minimizing the grand potential in a simplified schematic model, we find that the proper color-singlet Q-Qbar potential can be obtained from the total internal energy U_1 by subtracting the gluon internal energy contributions. We carry out this subtraction in the local energy-density approximation in which the gluon energy density can be related to the local gluon pressure by the quark-gluon plasma equation of state. We find in this approximation that the proper color-singlet Q-Qbar potential is approximately F_1 for T ~ T_c and it changes to (3/4)F_1+(1/4)U_1 at high temperatures. In this potential model, the J/psi is weakly bound above the phase transition temperature T_c, and it dissociates spontaneously above 1.62 T_c, while chi_c and psi' are unbound in the quark-gluon plasma. The bottomium states Upsilon, chi_b and Upsilon' are bound in the quark-gluon plasma and they dissociate at 4.10 T_c, 1.18 T_c, and 1.38 T_c respectively. For comparison, we evaluate the heavy quarkonium binding energies also in other models using the free energy F_1 or the total internal energy U_1 as the Q-Qbar potential. The comparison shows that the model with the new Q-Qbar potential proposed in this manuscript gives dissociation temperatures that agree best with those from spectral function analyses. We evaluate the cross section for sigma(g+J/psi->c+cbar) and its inverse process, in order to determine the J/psi dissociation width and the rate of J/psi production by recombining c and cbar in the quark gluon plasma.Comment: 30 pages, in Late

    Statistical and data reporting guidelines for the European Journal of Cardio-Thoracic Surgery and the Interactive CardioVascular and Thoracic Surgery

    Get PDF
    As part of the peer review process for the European Journal of Cardio-Thoracic Surgery (EJCTS) and the Interactive CardioVascular and Thoracic Surgery (ICVTS), a statistician reviews any manuscript that includes a statistical analysis. To facilitate authors considering submitting a manuscript and to make it clearer about the expectations of the statistical reviewers, we present up-to-date guidelines for authors on statistical and data reporting specifically in these journals. The number of statistical methods used in the cardiothoracic literature is vast, as are the ways in which data are presented. Therefore, we narrow the scope of these guidelines to cover the most common applications submitted to the EJCTS and ICVTS, focusing in particular on those that the statistical reviewers most frequently comment o
    corecore